Blog
Eメール
Eメールセキュリティに対する各種AIアプローチの比較







近年、人工知能(AI)のイノベーションはEメールセキュリティの環境を一変させましたが、各システムの違いが何なのかを判断することは難しいことも多いと言えます。現実には、AIという用語の傘の下には明確に区別されるアプローチが含まれ、このテクノロジーにより真の保護が提供されるのか、防御の思い込みだけなのかが分かれます。
1つの後ろ向きアプローチでは、すでに悪意あるものと判断された何千ものEメールをマシンに入力し、これらのEメールに含まれるパターンを探すようにトレーニングして将来の攻撃を見つける方法がとられています。もう1つのアプローチは、AIシステムを使って組織の現実のデータ全体を分析し、「正常」とは何かという概念を確立してから、攻撃を示すかもしれないかすかな逸脱を見つけるというものです。
以下に、各アプローチの相対的メリットを比較しました。特に、データセットでトレーニングされた機械学習システムをすり抜けるために最新のニュースを活用した新しい攻撃を念頭に置いています。以前に特定された「既知の悪」でマシンをトレーニングすることは、ある種の時間がたっても変化しない特定のコンテキスト、たとえばEメールの背後の意図を識別することなどにしか有効ではありません。しかし、効果的なEメールソリューションとなるには、組織のコンテキストでの「正常」を理解することにより不審で異常なEメールを識別し、新しい攻撃でも捕捉することができる自己学習型アプローチも取り入れなければなりません。
シグネチャ - 後ろ向きのアプローチ
過去数十年間、サイバーセキュリティテクノロジーは以前に見られた攻撃が再度発生することを防ぐことでリスクを緩和しようとしてきました。その昔、特定の種類のマルウェアあるいは攻撃のインフラの寿命が数か月、数年であったころには、この手法でも満足できました。しかし、このアプローチではどうしても悪意あるアクターとのいたちごっこになります。将来の検知を導くのに常に過去を見ている状態です。攻撃の寿命が短くなり、1つのドメインが1つのEメールで使われた後まったく見られなくなってしまうような状況において、この過去を向いたシグネチャベースのアプローチはよりインテリジェントなシステムへと幅広く置き換えられています。
「悪い」Eメールを使ってマシンをトレーニング
よくあるAIアプローチは、何千あるいは何百万ものEメールを含むきわめて大量のデータセットを利用するというものです。これらのEメールを取り込むと、悪意あるEメールに共通したパターンを探すようにAIがトレーニングされます。その上でシステムはそのデータに基づきモデル、ルールセット、そしてブラックリストを更新します。
この手法は従来のルールやシグネチャに対する改良ではありますが、依然として後手であり、新しい攻撃インフラや新種のEメール攻撃を阻止することはできません。これは、不完全な従来のアプローチを自動化しているに過ぎません。ただ人間がルールやシグネチャを更新する代わりに、マシンがそれをやっているだけです。
このアプローチだけに依存することには、1つの、しかし致命的な欠陥があります。それは、これまでに見たことがない新しいタイプの攻撃を阻止することができないということです。成功のためには「患者第一号」(最初の被害者)が存在しなければならないということを、受けいれているのです。
業界はこのアプローチに付随する問題を認識し始めており、自動化されたシステムとセキュリティ研究者ともに膨大なリソースがこの問題の解決に投入されつつあります。たとえば、「データ拡張」と呼ばれるテクニックの使用もその1つです。これは、すり抜けた悪意あるEメールをもとに、オープンソースのテキスト拡張ライブラリを使って “似たような” Eメールを作成することにより多数の “トレーニングサンプル” を作成し、 すり抜けたフィッシングメールだけではなく、それに似た他のメールもマシンに学習させ、類似の言葉遣いをする、同じカテゴリの将来の攻撃も検知できるようにするものです。
しかし、解決できない問題にこのような膨大な時間と手間をつぎ込むことは、大きな無駄となってしまうかもしれません。なぜ欠陥のあるシステムを補修しようとして、仕組みを根本から変えようとしないのでしょうか?このアプローチの限界を指摘する前に、攻撃の性質がまったく新しいものとなっている状況を見てみましょう。
「フィアウェア」の台頭
パンデミックが世界を襲い、各国政府が渡航禁止や厳しい行動制限を課すなかで、間違いなく世の中全体に恐怖と不安が起こりました。このブログで以前にも解説しましたが、サイバー犯罪者達はこれにすばやく便乗し、情報を求める人々の気持ちを利用して、COVID-19に関連するEメールを装った、マルウェアや認証情報抜き取りリンクを含むメールを送信しました。
これらのEメールは多くのケースにおいてCenters for Disease Control and Prevention (疾病対策予防センター)を偽装しており、またパンデミックの経済的影響が出始めると、連邦小企業庁(SBA)を騙ったものが多くなりました。世界の状況がシフトすると、攻撃者の戦術もそれに対応したのです。さらにその過程で、COVID-19に関係する130,000以上の新しいドメインが購入されました。
ここで、Eメールセキュリティに対する前述のアプローチが、これらの新しいEメール戦術にどう対抗できるか考えてみましょう。問題は、‘COVID-19’という言葉が発明されてもいないときに、どうしたらその言葉を含むEメールを探すようモデルをトレーニングできるのか?ということになります。
COVID-19 はその最も顕著な例となりますが、攻撃者達がこのアプローチのツールを回避するのに利用し、フィッシングメールで受信者のさらなる関心を惹きつけようとする、ありとあらゆる新しい想定外のニュースのサイクルに同じ理由付けが当てはまります。さらに、Eメール攻撃がまさにあなたの組織を標的としたものであった場合、これには特別に作成した、教師あり機械学習ではとてもトレーニングできない細かな特定の事柄について言及したニュースが含まれている可能性があります。
これは、将来に備えるために過去の攻撃を振り返るケースがEメールセキュリティにおいてまったくないと言っているのではありません。ただ、今はそういう状況ではないということです。
意図を特定する
Darktraceはこのアプローチをある特定の目的に使っています。それは将来も有効で時が経っても変わってしまわないもの、つまりEメールの言葉の使い方とトーンを分析することにより意図を識別することです。たとえば、「これは勧誘しようとしているものか?送信者は機密性が高い情報を出すよう誘導しようとしているか?これは脅迫か?」といった問いをするのです。ある程度の時間をかけて収集されたきわめて大きなデータセットでシステムをトレーニングすることにより、たとえば、勧誘とはどういったものかを理解し始めることができます。これにより、共通の特徴に基づいて将来の勧誘の事例を簡単に見つけることができるようになります。
このような方法でシステムをトレーニングすることは、その時々のニュースやフィッシングEメールのトピックとは異なり、基本的なトーンや言葉遣いは時が経っても変わらないからです。勧誘の試みは常に勧誘の試みであり、必ず共通の特徴を持っているはずです。
こうした理由から、このアプローチは大きなエンジンの中のごく小さな一部として機能します。脅威の性質について追加的な兆候を提示するものではありますが、それ自体が悪意あるEメールの判定に使われるものではありません。
未知の未知を検知する
意図を識別するために上記のアプローチを使うことに加えて、Darktraceは教師なし機械学習を使用します。これはあらゆるEメールから何千ものデータポイントを抽出し、推定を行うことから始まります。これらの一部はEメール自体から直接取得され、他には上記の意図判定タイプの分析によってしか得られないデータもあります。また、組織のEメール、ネットワーク、クラウド環境全体に存在するすべてのデータのより幅広いコンテキストでEメールを見ることから得られる考察もあります。
このように、格段に大きくより包括的なインジケータのセットと、Eメールについてのより詳細な説明が得られて初めて、トピックとは無関係な機械学習エンジンにデータを入力し、そのデータを何百万もの角度から調べ、組織の正常な「生活パターン」というより幅広いコンテキストに照らして相応しいかどうかを理解することができます。すべてのEメールをあわせて監視することにより、機械学習エンジンは次のような事柄を判定できます:
- この人は普段ZIPファイルを受信しているか?
- このサプライヤーは通常Dropboxへのリンクを送信するか?
- この送信者がこれまでに中国からログインしたことはあるか?
- これらの受信者は通常同じEメールを一緒に受信することがあるか?
このテクノロジーは組織全体でパターンを識別し、組織の成長と変化に応じて進化する「自己」の意識を獲得します。何が「正常」でなにがそうでないかということに対するこの本質的な理解によって、AIは単なる「既知の悪の新しい変化形」ではなく、真の「未知の未知」を発見することができるのです。
この種の分析は言語やトピックに依存しないという追加的利点があります。脅威を示す特定のパターンを探す代わりに、異常の検知に的を絞っているため、組織がコミュニケーションに主に使う言語が英語、スペイン語、日本語、その他どのような言語であっても関係なく効果を発揮できるのです。
この2つのアプローチを重ねることで、Eメールの背後にある意図を理解し、そのEメールが通常のコミュニケーションのコンテキストに照らして相応しいかどうかを理解することができるのです。そしてこれらすべては、仮定を行ったり、この脅威を以前に見たことがあるかどうかに関係なく実行されます。
長年の開発
現在では、Eメールセキュリティに対する従来のアプローチが失敗したことはほぼ理解されています。既存のレコメンデーションエンジンがなぜサイバーセキュリティ空間に適用されつつあるのかもこのことから理解できます。一見すると、これらのソリューションはセキュリティチームにとって魅力的です。しかし高度に標的型の、まったく独自のスピアフィッシングEメールはこれらのシステムを簡単に回避してしまいます。初めて遭遇したEメール脅威を阻止するのにこれらのシステムに頼ることはできません。これらは以前に見られたトピック、ドメイン、ペイロードを持つ既知の攻撃に依存しているためです。
効果的な、多層的AIアプローチは長年の研究開発を要します。悪意あるEメールを無害なコミュニケーションから区別する問題を解決するための単一の数学的モデルというものは存在しないのです。多層的なアプローチでは、競合する数学的モデルのそれぞれに強みと弱みがあることを前提としています。これらのモデルが持つべき相対的な重み付けを自動的に判断し、これらを相互に比較して全体的な「特異性スコア」をパーセンテージとして出力します。これにより、1つのEメールが組織全体のEメールトラフィックフローと比較して具体的にどの程度異常なのかを表すことができます。
Eメールセキュリティは過去の脅威を見て明日の脅威を予測できるという考えをきっぱりと捨てる時がきたのです。効果的なAIサイバーセキュリティシステムは過去の攻撃に依存することなく異常性を識別することにより、まったく独自で新しい攻撃を、受信箱に到達する前にキャッチすることができます。
Like this and want more?
More in this series
Blog
Eメール
Darktrace/Email in Action: Why AI-Driven Email Security is the Best Defense Against Sustained Phishing Campaigns
_11zon.jpg)


Stopping the bad while allowing the good
Since its inception, email has been regarded as one of the most important tools for businesses, revolutionizing communication and allowing global teams to become even more connected. But besides organizations heavily relying on email for their daily operations, threat actors have also recognized that the inbox is one of the easiest ways to establish an initial foothold on the network.
Today, not only are phishing campaigns and social engineering attacks becoming more prevalent, but the level of sophistication of these attacks are also increasing with the help of generative AI tools that allow for the creation of hyper-realistic emails with minimal errors, effectively lowering the barrier to entry for threat actors. These diverse and stealthy types of attacks evade traditional email security tools based on rules and signatures, because they are less likely to contain the low-sophistication markers of a typical phishing attack.
In a situation where the sky is the limit for attackers and security teams are lean, how can teams equip themselves to tackle these threats? How can they accurately detect increasingly realistic malicious emails and neutralize these threats before it is too late? And importantly, how can email security block these threats while allowing legitimate emails to flow freely?
Instead of relying on past attack data, Darktrace’s Self-Learning AI detects the slightest deviation from a user’s pattern of life and responds autonomously to contain potential threats, stopping novel attacks in their tracks before damage is caused. It doesn’t define ‘good’ and ‘bad’ like traditional email tools, rather it understands each user and what is normal for them – and what’s not.
This blog outlines how Darktrace/Email™ used its understanding of ‘normal’ to accurately detect and respond to a sustained phishing campaign targeting a real-life company.
Responding to a sustained phishing attack
Over the course of 24 hours, Darktrace detected multiple emails containing different subjects, all from different senders to different recipients in one organization. These emails were sent from different IP addresses, but all came from the same autonomous system number (ASN).

The emails themselves had many suspicious indicators. All senders had no prior association with the recipient, and the emails generated a high general inducement score. This score is generated by structural and non-specific content analysis of the email – a high score indicates that the email is trying to induce the recipient into taking a particular action, which may lead to account compromise.
Additionally, each email contained a visually prominent link to a file storage service, hidden behind a shortened bit.ly link. The similarities across all these emails pointed to a sustained campaign targeting the organization by a single threat actor.


With all these suspicious indicators, many models were breached. This drove up the anomaly score, causing Darktrace/Email to hold all suspicious emails from the recipients’ inboxes, safeguarding the recipients from potential account compromise and disallowing the threats from taking hold in the network.
Imagining a phishing attack without Darktrace/Email
So what could have happened if Darktrace had not withheld these emails, and the recipients had clicked on the links? File storage sites have a wide variety of uses that allow attackers to be creative in their attack strategy. If the user had clicked on the shortened link, the possible consequences are numerous. The link could have led to a login page for unsuspecting victims to input their credentials, or it could have hosted malware that would automatically download if the link was clicked. With the compromised credentials, threat actors could even bypass MFA, change email rules, or gain privileged access to a network. The downloaded malware might also be a keylogger, leading to cryptojacking, or could open a back door for threat actors to return to at a later time.


The limits of traditional email security tools
Secure email gateways (SEGs) and static AI security tools may have found it challenging to detect this phishing campaign as malicious. While Darktrace was able to correlate these emails to determine that a sustained phishing campaign was taking place, the pattern among these emails is far too generic for specific rules as set in traditional security tools. If we take the characteristic of the freemail account sender as an example, setting a rule to block all emails from freemail accounts may lead to more legitimate emails being withheld, since these addresses have a variety of uses.
With these factors in mind, these emails could have easily slipped through traditional security filters and led to a devastating impact on the organization.
結論
As threat actors step up their attacks in sophistication, prioritizing email security is more crucial than ever to preserving a safe digital environment. In response to these challenges, Darktrace/Email offers a set-and-forget solution that continuously learns and adapts to changes in the organization.
Through an evolving understanding of every environment in which it is deployed, its threat response becomes increasingly precise in neutralizing only the bad, while allowing the good – delivering email security that doesn’t come at the expense of business growth.
Blog
Inside the SOC
Black Basta: Old Dogs with New Tricks



What is Black Basta?
Over the past year, security researchers have been tracking a new ransomware group, known as Black Basta, that has been observed targeted organizations worldwide to deploy double extortion ransomware attacks since early 2022. While the strain and group are purportedly new, evidence seen suggests they are an offshoot of the Conti ransomware group [1].
The group behind Black Basta run a Ransomware as a Service (RaaS) model. They work with initial access brokers who will typically already have a foothold in company infrastructure to begin their attacks. Once inside a network, they then pivot internally using numerous tools to further their attack.
Black Basta Ransomware
Like many other ransomware actors, Black Basta uses double extortion as part of its modus operandi, exfiltrating sensitive company data and using the publication of this as a second threat to affected companies. This is also advertised on a dark web site, setup by the group to apply further pressure for affected companies to make ransom payments and avoid reputational damage.
The group also seems to regularly take advantage of existing tools to undertake the earlier stages of their attacks. Notably, the Qakbot banking trojan, seems to be the malware often used to gain an initial foothold within compromised environments.
Analysis of the tools, procedures and infrastructure used by Black Basta belies a maturity to the actors behind the ransomware. Their models and practices suggest those involved are experienced individuals, and security researchers have drawn possible links to the Conti ransomware group.
As such, Black Basta is a particular concern for security teams as attacks will likely be more sophisticated, with attackers more patient and able to lie low on digital estates for longer, waiting for the opportune moment to strike.
Cyber security is an infinite game where defender and attacker are stuck as cat and mouse; as new attacks evolve, security vendors and teams respond to the new indicators of compromise (IoCs), and update their existing rulesets and lists. As a result, attackers are forced to change their stripes to evade detection or sometimes even readjust their targets and end goals.
Anomaly Based Detection
By using the power of Darktrace’s Self-Learning AI, security teams are able to detect deviations in behavior. Threat actors need to move through the kill chain to achieve their aims, and in doing so will cause affected devices within networks to deviate from their expected pattern of life. Darktrace’s anomaly-based approach to threat detection allows it recognize these subtle deviations that indicate the presence of an attacker, and stop them in their tracks.
Additionally, the ecosystem of cyber criminals has matured in the last few decades. It is well documented how many groups now operate akin to legitimate companies, with structure, departments and governance. As such, while new attack methods and tactics do appear in the wild, the maturity in their business models belie the experience of those behind the attack.
As attackers grow their business models and develop their arsenal of attack vectors, it becomes even more critical for security teams to remain vigilant to anomalies within networks, and remain agnostic to underlying IoCs and instead adopt anomaly detection tools able to identify tactics, techniques, and procedures (TTPs) that indicate attackers may be moving through a network, ahead of deployment of ransomware and data encryption.
Darktrace’s Coverage of Black Basta
In April 2023, the Darktrace Security Operations Center (SOC) assisted a customer in triaging and responding to an ongoing ransomware infection on their network. On a Saturday, the customer reached out directly to the Darktrace analyst team via the Ask the Expert service for support after they observed encrypted files and locked administrative accounts on their network. The analyst team were able to investigate and clarify the attack path, identifying affected devices and assisting the customer with their remediation. Darktrace DETECT™ observed varying IoCs and TTPs throughout the course of this attack’s kill chain; subsequent analysis into these indicators revealed this had likely been a case of Black Basta seen in the wild.
初期の侵入
The methods used by the group to gain an initial foothold in environments varies – sometimes using phishing, sometimes gaining access through a common vulnerability exposed to the internet. Black Basta actors appear to target specific organizations, as opposed to some groups who aim to hit multiple at once in a more opportunistic fashion.
In the case of the Darktrace customer likely affected by Black Basta, it is probable that the initial intrusion was out of scope. It may be that the path was via a phishing email containing an Microsoft Excel spreadsheet that launches malicious powershell commands; a noted technique for Black Basta. [3][4] Alternatively, the group may have worked with access brokers who already had a foothold within the customer’s network.
One particular device on the network was observed acting anomalously and was possibly the first to be infected. The device attempted to connect to multiple internal devices over SMB, and connected to a server that was later found to be compromised and is described throughout the course of this blog. During this connection, it wrote a file over SMB, “syncro.exe”, which is possibly a legitimate Remote Management software but could in theory be used to spread an infection laterally. Use of this tool otherwise appears sporadic for the network, and was notably unusual for the environment.
Given these timings, it is possible this activity is related to the likely Black Basta compromise. However, there is some evidence online that use of Syncro has been seen installed as part of the execution of loaders such as Batloader, potentially indicating a separate or concurrent attack [5].
Internal Reconnaissance + Lateral Movement
However the attackers gained access in this instance, the first suspicious activity observed by Darktrace originated from an infected server. The attacker used their foothold in the device to perform internal reconnaissance, enumerating large portions of the network. Darktrace DETECT’s anomaly detection noted a distinct rise in connections to a large number of subnets, particularly to closed ports associated with native Windows services, including:
- 135 (RPC)
- 139 (NetBIOS)
- 445 (SMB)
- 3389 (RDP)
During the enumeration, SMB connections were observed during which suspiciously named executable files were written:
- delete.me
- covet.me
Data Staging and Exfiltration
Around 4 hours after the scanning activity, the attackers used their knowledge gained during enumeration about the environment to begin gathering and staging data for their double extortion attempts. Darktrace observed the same infected server connecting to a file storage server, and downloading over 300 GiB of data. Darktrace DETECT identified that the connections had been made via SMB and was able to present a list of filenames to the customer, allowing their security team to determine the data that had likely been exposed to the attackers.
The SMB paths detected by Darktrace showed a range of departments’ file areas being accessed by threat actors. This suggests they were interested in getting as much varied data as possible, presumably in an attempt to ensure a large amount of valuable information was at their disposal to make any threats of releasing them more credible, and more damaging to the company.
Shortly after the download, the device made an external connection over SSH to a rare domain, dataspt[.]com, hosted in the United States. The connection itself was made over an unusual port, 2022, and Darktrace recognized that the domain was new for the network.
During this upload, the threat actors uploaded a similar volume of data to the 300GiB that had been downloaded internally earlier. Darktrace flagged the usual elements of this external upload, making the identification and triage of this exfiltration attempt easier for the customer.
On top of this, Darktrace’s autonomous investigation tool Cyber AI Analyst™ launched an investigation into this on-going activity and was able to link the external upload events to the internal download, identifying them as one exfiltration incident rather than two isolated events. AI Analyst then provided a detailed summary of the activity detected, further speeding up the identification of affected files.
Preparing for Exploitation
All the activity documented so far had occurred on a Wednesday evening. It was at this point that the burst of activity calmed, and the ransomware lay in wait within the environment. Other devices around the network, particularly those connected to by the original infected server and a domain controller, were observed performing some elements of anomalous activity, but the attack seemed to largely take a pause.
However, on the Saturday morning, 3 days later, the compromised server began to change the way it communicated with attackers by reaching out to a new command and control (C2) endpoint. It seemed that attackers were gearing up for their attack, taking advantage of the weekend to strike while security teams often run with a reduced staffing.
Darktrace identified connections to a new endpoint within 4 minutes of it first being seen on the customer’s environment. The server had begun making repeated SSL connections to the new external endpoint, faceappinc[.]com, which has been flagged as malicious by various open-source intelligence (OSINT) sources.
The observed JA3 hash (d0ec4b50a944b182fc10ff51f883ccf7) suggests that the command-line tool BITS Admin was being used to launch these connections, another suggestion of the use of mature tooling.
In addition to this, Darktrace also detected the server using an administrative credential it had never previously been associated with. Darktrace recognized that the use of this credential represented a deviation from the device’s usual activity and thus could be indicative of compromise.
The server then proceeded to use the new credential to authenticate over Keberos before writing a malicious file (“management.exe”) to the Temp directory on a number of internal devices.
Encryption
At this point, the number of anomalous activities detected from the server increased massively as the attacker seems to connect networkwide in an attempt to cause as quick and destructive an encryption effort as possible. Darktrace observed numerous files that had been encrypted by a local process. The compromised server began to write ransom notes, named “instructions_read_me.txt” to other file servers, which presumably also had successfully deployed payloads. While Black Basta actors had initially been observed dropping ransom notes named “readme.txt”, security researchers have since observed and reported an updated variant of the ransomware that drops “instructions_read_me_.txt”, the name of the file detected by Darktrace, instead [6].
Another server was also observed making repeated SSL connections to the same rare external endpoint, faceappinc[.]com. Shortly after beginning these connections, the device made an HTTP connection to a rare IP address with no hostname, 212.118.55[.]211. During this connection, the device also downloaded a suspicious executable file, cal[.]linux. OSINT research linked the hash of this file to a Black Basta Executable and Linkable File (ELF) variant, indicating that the group was highly likely behind this ransomware attack.
Of particular interest again, is how the attacker lives off the land, utilizing pre-installed Windows services. Darktrace flagged that the server was observed using PsExec, a remote management executable, on multiple devices.
Darktrace Assistance
Darktrace DETECT was able to clearly detect and provide visibility over all stages of the ransomware attack, alerting the customer with multiple model breaches and AI Analyst investigation(s) and highlighting suspicious activity throughout the course of the attack.
For example, the exfiltration of sensitive data was flagged for a number of anomalous features of the meta-data: volume; rarity of the endpoint; port and protocol used.
In total, the portion of the attack observed by Darktrace lasted about 4 days from the first model breach until the ransomware was deployed. In particular, the encryption itself was initiated on a Saturday.
The encryption event itself was initiated on a Saturday, which is not uncommon as threat actors tend to launch their destructive attacks when they expect security teams will be at their lowest capacity. The Darktrace SOC team regularly observes and assists in customer’s in the face of ransomware actors who patiently lie in wait. Attackers often choose to strike as security teams run on reduced hours of manpower, sometimes even choosing to deploy ahead of longer breaks for national or public holidays, for example.
In this case, the customer contacted Darktrace directly through the Ask the Expert (ATE) service. ATE offers customers around the clock access to Darktrace’s team of expert analysts. Customers who subscribe to ATE are able to send queries directly to the analyst team if they are in need of assistance in the face of suspicious network activity or emerging attacks.
In this example, Darktrace’s team of expert analysts worked in tandem with Cyber AI Analyst to investigate the ongoing compromise, ensuring that the investigation and response process were completed as quickly and efficiently as possible.
Thanks to Darktrace’s Self-Learning AI, the analyst team were able to quickly produce a detailed report enumerating the timeline of events. By combining the human expertise of the analyst team and the machine learning capabilities of AI Analyst, Darktrace was able to quickly identify anomalous activity being performed and the affected devices. AI Analyst was then able to collate and present this information into a comprehensive and digestible report for the customer to consult.
結論
It is likely that this ransomware attack was undertaken by the Black Basta group, or at least using tools related to their method. Although Black Basta itself is a relatively novel ransomware strain, there is a maturity and sophistication to its tactics. This indicates that this new group are actually experienced threat actors, with evidence pointing towards it being an offshoot of Conti.
The Pyramid of Pain is a well trodden model in cyber security, but it can help us understand the various features of an attack. Indicators like static C2 destinations or file hashes can easily be changed, but it’s the underlying TTPs that remain the same between attacks.
In this case, the attackers used living off the land techniques, making use of tools such as BITSAdmin, as well as using tried and tested malware such as Qakbot. While the domains and IPs involved will change, the way these malware interact and move about systems remains the same. Their fingerprint therefore causes very similar anomalies in network traffic, and this is where the strength of Darktrace lies.
Darktrace’s anomaly-based approach to threat detection means that these new attack types are quickly drawn out of the noise of everyday traffic within an environment. Once attackers have gained a foothold in a network, they will have to cause deviation from the usual pattern of a life on a network to proceed; Darktrace is uniquely placed to detect even the most subtle changes in a device’s behavior that could be indicative of an emerging threat.
Machine learning can act as a force multiplier for security teams. Working hand in hand with the Darktrace SOC, the customer was able to generate cohesive and comprehensive reporting on the attack path within days. This would be a feat for humans alone, requiring significant resources and time, but with the power of Darktrace’s Self-Learning AI, these deep and complex analyses become as easy as the click of a button.
Credit to: Matthew John, Director of Operations, SOC, Paul Jennings, Principal Analyst Consultant
Appendices
Darktrace DETECT Model Breaches
内部偵察
Device / Multiple Lateral Movement Model Breaches
Device / Large Number of Model Breaches
Device / Network Scan
Device / Anomalous RDP Followed by Multiple Model Breaches
Device / Possible SMB/NTLM Reconnaissance
Device / SMB Lateral Movement
Anomalous Connection / SMB Enumeration
Anomalous Connection / Possible Share Enumeration Activity
Device / Suspicious SMB Scanning Activity
Device / RDP Scan
Anomalous Connection / Active Remote Desktop Tunnel
Device / Increase in New RPC Services
Device / ICMP Address Scan
Download and Upload
Unusual Activity / Enhanced Unusual External Data Transfer
Unusual Activity / Unusual External Data Transfer
Anomalous Connection / Uncommon 1 GiB Outbound
Anomalous Connection / Data Sent to Rare Domain
Anomalous Connection / Download and Upload
Compliance / SSH to Rare External Destination
Anomalous Server Activity / Rare External from Server
Anomalous Server Activity / Outgoing from Server
Anomalous Connection / Application Protocol on Uncommon Port
Anomalous Connection / Multiple Connections to New External TCP Port
Device / Anomalous SMB Followed By Multiple Model Breaches
Unusual Activity / SMB Access Failures
Lateral Movement and Encryption
User / New Admin Credentials on Server
Compliance / SMB Drive Write
Device / Anomalous RDP Followed By Multiple Model Breaches
Anomalous Connection / High Volume of New or Uncommon Service Control
Anomalous Connection / New or Uncommon Service Control
Device / New or Unusual Remote Command Execution
Anomalous Connection / SMB Enumeration
Additional Beaconing and Tooling
Device / Initial Breach Chain Compromise
Device / Multiple C2 Model Breaches
Compromise / Large Number of Suspicious Failed Connections
Compromise / Sustained SSL or HTTP Increase
Compromise / SSL or HTTP Beacon
Compromise / Suspicious Beaconing Behavior
Compromise / Large Number of Suspicious Successful Connections
Compromise / High Volume of Connections with Beacon Score
Compromise / Slow Beaconing Activity To External Rare
Compromise / SSL Beaconing to Rare Destination
Compromise / Beaconing Activity To External Rare
Compromise / Beacon to Young Endpoint
Compromise / Agent Beacon to New Endpoint
Anomalous Server Activity / Rare External from Server
Anomalous Connection / Multiple Failed Connections to Rare Endpoint
Anomalous File / EXE from Rare External Location
IoC - Type - Description + Confidence
dataspt[.]com - Hostname - Highly Likely Exfiltration Server
46.22.211[.]151:2022 - IP Address and Unusual Port - Highly Likely Exfiltration Server
faceappinc[.]com - Hostname - Likely C2 Infrastructure
Instructions_read_me.txt - Filename - Almost Certain Ransom Note
212.118.55[.]211 - IP Address - Likely C2 Infrastructure
delete[.]me - Filename - Potential lateral movement script
covet[.]me - Filename - Potential lateral movement script
d0ec4b50a944b182fc10ff51f883ccf7 - JA3 Client Fingerprint - Potential Windows BITS C2 Process
/download/cal.linux - URI - Likely BlackBasta executable file
1f4dcfa562f218fcd793c1c384c3006e460213a8 - Sha1 File Hash - Likely BlackBasta executable file

参考文献
[1] https://blogs.blackberry.com/en/2022/05/black-basta-rebrand-of-conti-or-something-new
[2] https://www.cybereason.com/blog/threat-alert-aggressive-qakbot-campaign-and-the-black-basta-ransomware-group-targeting-u.s.-companies
[4] https://unit42.paloaltonetworks.com/atoms/blackbasta-ransomware/
[6] https://www.pcrisk.com/removal-guides/23666-black-basta-ransomware