Blog

Thought Leadership

Cyber AI Analyst:ノイズを断ち切り、セキュリティの優位性を獲得する

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Nov 2022
29
Nov 2022
This blog addresses the issue of alert fatigue and explains how Cyber AI Analyst breaks down billions of individual events, first into anomalous events and then into prioritized security incidents ready for the security team's review.

サイバーセキュリティの専門家にとって、IaaSクラウドやオンプレミスネットワークに加え、Eメール、SaaS環境、エンドポイントなどを監視するシステムからのアラートノイズの津波に対処することなしに、最新の脅威や新たな攻撃を把握することは非常に困難です。残念ながら、これらの要求による疲労は、過労や燃え尽き症候群、さらには従業員の高い離職率につながる可能性があります。 

サイバーセキュリティの専門家が世界的に350万人も不足していることは、この問題をさらに悪化させています。また、CISOをはじめとするセキュリティリーダーにとって、新しいマルウェアや攻撃手法を次々と生み出し、応用を繰り返す脅威アクターの前に立ちはだかるアラートノイズをどう切り抜けるかは極めて大きな課題です。

ハードワークではなく、スマートに働く

セキュリティチームが単調な業務から脱却し、創造的な思考で専門知識を活用できるようにすることが、人材確保を支援する方法の1つです。しかし、脅威の検知、調査、および対処という重労働を自律化する、あるいは AI 駆動のツールに任せることで、人間のチームは長期的な目標に集中し、セキュリティアプローチについてより深く思考するために必要な余地を得ることができるのです。

セキュリティ対策は、脅威の進化に合わせて、既存のセキュリティ運用を問い直しながら、常にレベルアップしていくことが重要であり、それは、人海戦術で手探りのアラート対処の中では達成できません。

アラートの数が少なく、質が高くかつコンテキストに富んでいれば、それぞれのアラートの背景を簡単に調べることができ、ポリシーや設定を見直したり、組織の幅広いセキュリティアプローチについて有益な質問を投げかけたりすることができます。このようなレベルの作業は、セキュリティチームを強化し、成長を促進するものです。

Less is More

ビジネスリスク、すなわちサイバー破壊の潜在的な影響は、セキュリティチームの最大の関心事であるべきですが、リソース不足はほぼ常に制約であり続けます。アラートの量を減らすことは、単にノイズフロアを高めることを意味するわけではありません。ノイズフロアをアラートの閾値と考えることもできます。ノイズフロアが高すぎるとアラートの数は減りますが、脅威を見逃すことが多くなり、逆に低すぎると役に立たない偽陽性が大量に発生します。チームのための時間を確保することは、アラートを無視することと同じであってはなりません。

Darktrace DETECT™とCyber AI Analystの連携により、セキュリティチームの警告疲れや燃え尽き症候群に対処しながら、組織全体のセキュリティ体制を強化することが可能になります。Cyber AI Analystは、人間のアナリストが行っていた煩雑な作業を代行し、チームの全体的な意思決定を向上させます。チームは、平凡なアラート管理から解放され、機械とAIが重要な作業を行った後にのみ人間が投入されるため、より高いレベルで活動できるようになりました。

“Before AI Analyst, we were barely treading water with all of the alerts, most of which were false positives, our old systems produced daily. With AI Analyst, we’ve been able to exponentially reduce those alerts, harden our environment, and get strategic.”

Dr. Robert Spangler, the CISO and Assistant Executive Director of the New Jersey State Bar Association.

図1:数十億の個別事象をクリティカルインシデントに落とし込み、レビューする


Darktrace が28日間に約96億件のイベントを観測したとします。DETECT とCyber AI Analyst は、その膨大なデータを、例えば54件のクリティカルインシデント、あるいは1日あたり2件に絞り込めるかもしれません。その方法を紹介します。

96億のイベント

全体像を理解しようとするとき、パズルのピースの1つ1つが重要になります。そのため、Darktraceの自己学習型AIは、ネットワーク、Eメール、エンドポイント、OT、クラウド、SaaS環境など、デジタルエステート全体のデータソースと統合し、組織がデータを持つ場所ならどこにでも移動します。また、オープンアーキテクチャを採用しているため、DarktraceはSIEMやSOAR、パブリッククラウドや最新のゼロトラストテクノロジーまで、あらゆるものと迅速かつ容易に統合することができます。つまり、直接取り込んだデータであれ、統合したデータであれ、あらゆるデータを学習可能にすることができるのです。

この完全で文脈のあるデータセットを調べることで、自己学習型AIは、組織全体にとって「定常」がどのようなものかを常に進化させながら理解していきます。すべての接続、Eメール、アプリのログイン、リソースへのアクセス、VMの起動、PLCの再プログラムなどがシグナルとなり、Darktraceは学習、評価、理解の向上を図ることができるのです。

40,404件のモデルブリーチ

何十億ものイベントは、Darktrace DETECT が「定常」についての広範な知識を用いて、わずかな異常や「AIモデルブリーチ」のホストを引き出すために分析されます。これらのAIモデルブリーチの多くは、脅威的な活動を示す弱い指標となり、そのほとんどは、個別に脅威を知らせるには不十分なものです。そのため、この段階では人間の注意を払う必要はありません。Darktrace DETECTは、介入の必要なく、進行中のイベントの流れから異常な行動を自律的に導き出し続けます。 

200件のインシデント

Cyber AI Analystは、DETECT で収集された侵害モデルの総リストを使用し、脅威のインシデントを明確に判断する高度な作業を実行します。それ自体は無害に見えるかもしれない異常をつなぎ合わせることで、AI Analystは巧妙でしばしば広範囲な攻撃を引き出し、最初の侵害から現在に至るまでの経路を追跡します。これにより、本物の脅威インシデントのリストがより少なくなりますが、この段階ではまだ人間の注意を払う必要はありません。

54件の重大インシデント

Cyber AI Analyst は、組織が直面している脅威のインシデントを発見すると、どのインシデントをどのような優先順位でセキュリティチームに見せる必要があるかを判断する、重要なトリアージプロセスを開始します。これにより、人間のチームには、最も差し迫った脅威について高度に集中したブリーフィングが提供され、全体の作業量を大幅に削減し、アラート疲労を最小化または根絶することができます。上記の例では、1か月間に96億件以上の異なるイベントが発生した場合、チームは1日に2件のインシデントにしか対処できないことになります。この2つのインシデントには、自然言語処理と、詳細、デバイス、日付などのすべての関連情報が明確に表示されます。 

「他の騒々しいシステムを使っていたときは、本当に深い議論や深い調査をする時間がなかったので、若いチームメンバーが学ぶ機会も、サイバーセキュリティ戦略全体に情報を提供する機会も少なかったのです」とSpangler氏は言います。「現在、私たちは単に優れたチームというだけでなく、これまで以上に効率的で、迅速で、十分な情報を得ることができるようになりました。その結果、私たち全員がより優れたサイバーセキュリティの専門家となったのです。」

侵害が発生した場合、CISOとセキュリティリーダーは、完全なインシデントレポートを、しかも昨日中に欲しがっています。AIは、人間にはできないスピードと規模で、特定のタスクを処理することが期待されています。Cyber AI Analyst はリアルタイムで稼働するため、関連するすべてのイベントが、調査後すぐに利用可能なダウンロード可能なレポートとして提供されます。

AI Analystの調査プロセスの各ステップは、人間のチームにも見えるようになっています。インシデントにつながった関連イベントや違反を見ることができるだけでなく、必要であれば、クリックするだけで簡単にその中に入り込むことができます。もし調査が、メタデータレベルまで下りて、96億の全体シグナルのフィルタリングされたイベントや、PCAPデータを簡単に閲覧する必要がある場合、それらも利用可能で簡単に見つけることができます。

DETECT とCyber AI Analystはアラート疲労を軽減するだけでなく、インシデント調査も簡素化するため、セキュリティチームは権限を与えられたと感じ、燃え尽き症候群になることも少なくなります。 

Spangler氏は、「AI Analystを使い始めてから、離職率も低く、安定しています」と述べています。「騒がしくて時間を無駄にする誤検知に対応するために奔走することもなく、刺激的で楽しい調査になっています。簡単に言えば、私たちがこの仕事で好きなこと、つまり攻撃者と対戦する仮想チェスゲームは、自分が勝つとわかっていれば、もっと楽しいのです。」

自律遮断技術

Darktrace RESPOND™を導入した組織は、DETECT と Cyber AI Analystが提起したインシデントに自律的に、しかもわずか数秒で対処することができます。自己学習型AIによって構築された組織の完全なコンテキストを使用して、RESPONDは脅威を武装解除するために必要な最小限の破壊的措置をマシンスピードで実行します。セキュリティチームが攻撃について知る頃には、すでにその攻撃は封じ込められ、脅威との戦いの手探り状態から人間は解放され続けています。

日々の脅威の検知、対応、分析が完了したことで、セキュリティチームは、セキュリティ体制全体に十分な注意を払うことができるようになりました。脅威が一掃されれば、セキュリティ上のギャップや潜在的な改善点が明らかになり、それを追求するための時間と余裕が生まれます。

例えば、サードパーティのファイル共有サービス経由で潜在的な機密データをアップロードしているという傾向を発見した場合、このサービスへのアクセスをブロックすることを会社のポリシーとすべきかどうかを議論することになり、この行動によって引き起こされるはずだった将来のアラートの数をゼロにすることができるかもしれません。重要なのは、これは前述のノイズフロアを変更するのではなく、ビジネスのニーズに合わせてセキュリティポリシーを根本的に変更することであり、活動が収まれば、将来のアラートに間接的に影響を与える可能性があるということです。

その結果、実務担当者はより大きな価値を見いだし、セキュリティチームの努力は最適化され、組織は全体として強化されるのです。

「AI Analystが警告してくれる項目は、監視が必要な活動を特定したり、ネットワークを強化する方法を教えてくれたりするので、常に調べる価値があります」とSpangler氏は述べています。「アラートの数が減ったのも、さまざまな脅威から私たちを守ってくれているのも、そのおかげです。」

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Dan Fein
VP, Product

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Elliot Stocker
Product SME

After 2 years in a commercial role helping to deploy Darktrace across a broad range of digital environments, Elliot currently occupies the role of Product Subject Matter Expert, where he helps to articulate the value of Darktrace’s technology to customers around the world. Elliot holds a Masters degree in Data Science and Machine Learning, using this knowledge to communicate concepts around machine learning and AI in an accessible way to different audiences.

Book a 1-1 meeting with one of our experts
この記事を共有
USE CASES
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について

Blog

Inside the SOC

Sliver C2: How Darktrace Provided a Sliver of Hope in the Face of an Emerging C2 Framework

Default blog imageDefault blog image
17
Apr 2024

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

結論

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

付録

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

侵害指標(IoC)一覧

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

参考文献

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

続きを読む
著者について
Natalia Sánchez Rocafort
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.