Blog

Inside the SOC

Darktraceがフィッシング攻撃につながる大規模なアカウントハイジャックを検知した実例

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
May 2023
19
May 2023
このブログでは、Darktraceが大規模なSaaSの侵害を検知し、その後、教育機関を経由して伝播したフィッシング攻撃について説明します。

はじめに 

SaaSプラットフォームや多要素認証(MFA)サービスの普及を利用して、悪意あるアクターが組織のネットワークに不正にアクセスすることが後を絶たない中、アカウントの侵害を早い段階で防ぐために適切なセキュリティツールを導入することが極めて重要となっています。

攻撃者が頻繁に使用する手法の1つに、アカウントの乗っ取りがあります。アカウントの乗っ取りは、脅威アクターが認証情報を悪用してSaaSアカウントにログインする際に発生します。多くの場合、本物の攻撃者は通常ログインしないような珍しい場所からログインします。 

これらのアカウントへのアクセスは、フィッシングメールやパスワードスプレー攻撃によって認証情報を採取したり、ユーザーアカウントでMFAを有効にせず、認証にユーザー認証情報のみを必要とするなど、安全でないクラウド防御対策を悪用することで引き起こされます。アカウントの完全性が侵害されると、脅威アクターはマルウェアの配信、機密データの読み取りと流出、さらに社内外のユーザー認証情報を採取するためのフィッシングメールの送信など、さらなる活動を行い、攻撃サイクルを繰り返すことができます [1,2]。 

2023年初頭、 Darktraceは、教育分野の顧客のネットワーク上で大規模なアカウント乗っ取りとフィッシング攻撃を検知し、数百のアカウントに影響を与え、数千のEメールがネットワーク外に転送される結果となりました。Darktrace  DETECT™が提供する極めて高い可視性により、キルチェーンのあらゆる段階で敵対的な活動を検知することができました。Ask the Expert(ATE)サービスを通じてDarktrace Analystチームから直接サポートを受けることにより、顧客は十分に情報を得て改善策を実施できるようになりました。 

一連の攻撃の詳細

Darktrace はその結果、お客様のネットワーク上で乗っ取られた全てのアカウントで、見知らぬ場所からのログイン、すべての受信メールを悪意のあるEメールアドレスに転送するというメール転送ルールの有効化、フィッシングメールの送信とその削除という同じパターンの活動を確認しました。 

図1:乗っ取られたSaaSアカウントへの攻撃のタイムライン

初期アクセス

Darktrace DETECTは、2023年1月14日に顧客環境上の異常なSaaSアクティビティを最初に検知し、その後2月3日にも、複数のSaaSアカウントが、珍しいIPアドレスと地理的に不可能な移動タイミングを持つ非定型の場所からログインしていること、またはアカウント所有者が他の場所で活動している間にログインしていることが観察されました。オープンソースインテリジェンス(OSINT)ソースを使用したその後の調査で、IPアドレスの1つが最近ブルートフォースまたはパスワードスプレーの試みに関連していたことが判明しました。

このような異常なログインのパターンは、攻撃の期間中ずっと続き、毎日、より多くのユニークなアカウントが同様の異常なログインでモデルブリーチを発生させました。これらのユーザーのログインにはMFA認証が適用されなかったため、認証に認証情報のみを必要とすることで、最初の侵入プロセスが可能になりました。

Eメールを送信する 

また、侵害されたアカウントは、「Email HELP DESK」という件名のメールを外部および内部の受信者に送信していることが確認されました。これは、脅威者が社内のヘルプデスクを装って受信者の信頼を得るためにソーシャルエンジニアリング戦術を採用したものと思われます。

Eメールを転送する

ログインに成功した後、侵害されたアカウントは、外部のEメールアドレスにEメールを転送するためのEメールルールを作成し始め、そのうちのいくつかは、OSINTソースによると悪意のある活動のためのドメインに関連していたことが判明しました [3]。

  • chotunai[.]com
  • bymercy[.]com
  • breazeim[.]com
  • brandoza[.]com

Eメールの転送は、SaaSの侵害行為において、通信回線を制御するためによく見られる手口です。悪意のある脅威アクターは、機密情報の流出、侵害されたEメールへの持続的なアクセスの獲得、請求書支払いのリダイレクトなど、不正な目的のために進行中の通信に介入しようとすることがよくあります。 

Eメールを削除する

Eメール転送の直後、感染したアカウントが一斉に異常なEメールを削除したことが検知されました。さらに調査を進めると、これらのアカウントは以前に大量のフィッシングメールを送信しており、この大量削除は、送信トレイから削除することでこれらの活動を隠そうとしたものと思われます。

2月10日、この顧客はDarktrace が侵害されたと特定したすべてのアカウントにパスワードの一括リセットを適用し、MFAを備えた特権アカウントのプロビジョニングを行いました。これらの対策により、最初の侵入経路に対処し、侵害を食い止めることに成功したと発表しています。  

Darktrace のカバレッジ

Darktrace は、自己学習型AIを駆使して、アカウントが悪意のあるアクターに乗っ取られたことを示す可能性のある異常なSaaSアクティビティを検知する能力を効果的に実証しました。従来のルールやシグネチャベースのアプローチに頼るのではなく、Darktrace のモデルはネットワーク自体の理解を深め、危険なものが予想される生活パターンから逸脱した場合に瞬時に認識することができます。

図2:乗っ取られたSaaSアカウントでの異常なSaaSアクティビティの検知

初期アクセス

初期アクセスは以下のモデルで検知されました:

  • Security Integration / High Severity Integration Detection  
  • SaaS / Unusual Activity / Activity from Multiple Unusual IPs 
  • SaaS / Access / Unusual External Source for SaaS Credential Use 
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active 

初期アクセスは、以下のCyber AI Analyst インシデントでも検知されました:

  • Possible Hijack of Office365 Account 

モデルブリーチとAI Analystのインシデントでは、図3に描かれているように、MFAの使用不足と合わせて、100%レアな外部IPアドレスからのログインが検知されました。

Figure 3: Breach log showing initial detection of a SaaS login from a 100% rare IP where MFA was not used.
図4:Darktrace のSaaSコンソールで可視化された異常なSaaSアクティビティの初期検知

Eメールを転送する

Eメール転送は、以下のモデルで検知されました:

  • SaaS / Admin / Mail Forwarding Enabled 

攻撃されたアカウントの多くは、外部Eメールアドレスへのメール転送ルールを設定しており、表向きは、ネットワーク上での永続性を確立し、機密性が高い通信を流出させるために検知されました。

図5:Eメール転送の有効化は、当該アカウントで100%新規または珍しいものとして検知された

大量のEメール削除

大量のEメール削除は、以下のモデルで検知されました:

  • SaaS / Compromise / Suspicious Login and Mass Email Deletes 
  • SaaS / Resource / Mass Email Deletes from Rare Location 
図6: 危殆化したアカウントが、以前に送信したフィッシングメールを送信トレイから削除

Darktraceは、稀な場所から非常に異常な大量メール削除を行うアカウントを検知しました。この攻撃者は、「Email HELP DESK」というメールを削除しており、後にこの攻撃で使用された主要なフィッシングメールであることが確認されました。削除は侵害されたアカウントの送信トレイで観察され、おそらく悪意のある活動を隠すために行われたものと思われます。

Darktraceは、この連動した活動のパターンを、以下のようなシーケンシャルなモデルでも検知しました: 

  • SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent
  • SaaS / Compromise / Suspicious Login and Mass Email Deletes 

Ask the Expert

お客様は、ATE(Ask The Expert)サービスを利用して、攻撃に関するより多くの技術的な情報とサポートを要求しました。Darktraceの24時間365日体制のアナリストチームは、専門的な支援とさらなる詳細を提供し、その後の調査や修復のステップを支援することができました。 

さらなる検知と遮断  

残念ながら、このお客様は攻撃時にDarktrace/Email™を有効にしていませんでした。Darktrace/Emailは、インバウンドおよびアウトバウンドのメールフローを可視化することで、潜在的なデータ損失インシデントを監視することができます。この場合、Darktrace DETECT/Emailは、侵害されたアカウントから送信されたフィッシングメールや、攻撃者が社内のヘルプデスクになりすまそうとした試みを完全に可視化することができたと思われます。さらに、新たにAnalysis Outlookとの統合により、従業員はメールが疑わしい理由を理解し、セキュリティチームに直接メールを報告できるようになり、フィッシング攻撃に対するユーザーの意識を継続的に高めることができます。 

Darktrace/Emailは、Darktrace/Network™の検知を強化します。Darktrace/Network内の「Email Nexus」モデルをトリガーとして、デジタル資産全体で悪意のある活動を検知し、SaaSの不正ログインから不正ユーザーによって送信された大量のスパムメールまでを関連付けます。 

図7:Darktrace/Emailによって強化されたDarktrace/Network内のEmail Nexusモデル

Darktrace RESPOND™ は攻撃時に顧客環境で有効になっていませんでした。もし有効になっていれば、Darktraceはキルチェーンの複数にわたって検知されたSaaSモデルの侵害に対して自律的に行動を起こすことができたはずです。RESPONDは、乗っ取られたアカウントを無効にするか、一定期間強制的にログアウトさせ、悪意のある行為者によって確立された受信トレイのルールも無効にすることができたでしょう。これにより、顧客のセキュリティチームは、インシデントを分析し、状況を緩和するための貴重な時間を得ることができ、攻撃がこれ以上拡大することを防ぐことができました。 

結論

最終的に、Darktraceは、この大規模な標的型SaaSアカウントの乗っ取りとその後のフィッシング攻撃を検知することができた顧客ネットワーク上の比類のない可視性を示しました。これは、深層防御の重要性を強調するもので、決定的に重要なのは、この環境ではMFAが実施されていなかったため、標的となった組織がクレデンシャルの盗難による危険にさらされる可能性が高かったことです。また、このアカウント侵害の後にDarktraceが検知したフィッシング活動は、あらゆるセキュリティスタックにおけるEメール保護の必要性を強調しています。 

Darktraceの可視性により、アカウントのログイン、メール転送ルールの作成、送信メール、フィッシングメールの大量削除など、高度な粒度で攻撃を自律検知することができました。Darktraceの異常検知は、新たな脅威を特定する際に、シグネチャやルール、既知の侵害指標(IoC)に頼る必要がなく、代わりにユーザーの通常の行動からの逸脱を認識することに重点を置いていることを意味します。

しかし、進行中の攻撃に即座に介入して停止させることができる自律的な遮断技術が存在しなければ、組織は常に被害が発生した後に攻撃に対処することになります。Darktrace RESPONDは、疑わしい活動を検知するとすぐに対策を講じ、攻撃が拡大するのを防ぎ、お客様のビジネスに大きな支障をきたさないようにするためのユニークな存在です。

Credit to: Zoe Tilsiter, Cyber Analyst, Gernice Lee, Cyber Analyst.

付録

モデルブリーチ

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Admin / Mail Forwarding Enabled

SaaS / Compliance / Microsoft Cloud App Security Alert Detected

SaaS / Compromise / SaaS Anomaly Following Anomalous Login 

SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent

SaaS / Compromise / Suspicious Login and Mass Email Deletes 

SaaS / Resource / Mass Email Deletes from Rare Location

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Unusual Activity / Activity from Multiple Unusual IPs

SaaS / Unusual Activity / Multiple Unusual SaaS Activities 

Security Integration / Low Severity Integration Detection

Security Integration / High Severity Integration Detection

IoC一覧

brandoza[.]com - domain - probable domain of forwarded email address

breazeim[.]com - domain - probable domain of forwarded email address

bymercy[.]com - domain - probable domain of forwarded email address

chotunai[.]com - domain - probable domain of forwarded email address

MITRE ATT&CK マッピング

Tactic: INITIAL ACCESS, PERSISTENCE, PRIVILEGE ESCILATION, DEFENSE EVASION

Technique: T1078.004 – Cloud Accounts

Tactic: COLLECTION

Technique: T1114- Email Collection

Tactic:COLLECTION

Technique: T1114.003- Email Forwarding Rule

Tactic: IMPACT

Technique: T1485 - Data Destruction

Tactic: DEFENSE EVASION

Technique: T1578.003 – Delete Cloud Instance

参考文献

[1] Darktrace, 2022, Cloud Application Security_ Protect your SaaS with Self-Learning AI.pdf

[2] https://www.cloudflare.com/en-gb/learning/access-management/account-takeover/ 

[3] https://www.virustotal.com/gui/domain/chotunai.com 

NEWSLETTER

Like this and want more?

最新の業界ニュースやインサイトをお届けします。
You can unsubscribe at any time. Privacy Policy
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Zoe Tilsiter
Cyber Analyst
この記事を共有

More in this series

該当する項目はありません。

Blog

Inside the SOC

PurpleFox in a Henhouse: How Darktrace Hunted Down a Persistent and Dynamic Rootkit

Default blog imageDefault blog image
27
Nov 2023

Versatile Malware: PurpleFox

As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.

One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.

The Evolution of PurpleFox

The Original Strain

First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.  

Subsequent Variants

Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.

The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.

Darktrace detection of PurpleFox

In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.

Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.

While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.

攻撃の概要

Figure 1: Timeline of PurpleFox malware kill chain.

Initial Scanning over SMB

On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.

This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

Figure 2: Cyber AI Analyst technical details summarizing the initial scanning activity seen with the internal network scan over port 445.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

Figure 3: The affected device’s Model Breach Event Log showing the initial scanning activity observed by Darktrace DETECT and the corresponding suggested RESPOND action.

特権昇格

The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.

Exploitation

Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.

Figure 4: PurpleFox remote service control activity captured by a Darktrace DETECT model breach.
Figure 5: The infected device’s Model Breach Event Log showing the anomalous service control activity being picked up by DETECT.

There are a few MSIEXEC flags to note:

  • /i : installs or configures a product
  • /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required

Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Figure 6: The infected device’s Model Breach Event Log showing the outbound activity corresponding to PurpleFox’s wormlike spread. This was caught by DETECT and the corresponding suggested RESPOND action.

Installation

On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.

The first connection was made with the URI ‘/test.png’.  It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.

The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.

Figure 7: Packet Capture from an affected customer device showing the initial HTTP requests to the payload server.
Figure 8: Packet Capture showing the HTTP requests to download the payloads.

The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Figure 9: PCAP from the affected customer device showing the Windows Installer user-agent associated with the .PNG file download.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.

By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.  

Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.

In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.

Figure 10: Cyber AI Analyst technical details summarizing the downloads of the PurpleFox payload.
Figure 11 (a): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.
Figure 11 (b): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.

If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.

結論

The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indictors of compromise (IoCs), necessitating a more sophisticated approach to threat detection.  

Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.  

By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.

Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore

付録

Darktraceによるモデル検知

  • Device / Increased External Connectivity
  • Device / Large Number of Connections to New Endpoints
  • Device / SMB Session Brute Force (Admin)
  • Compliance / External Windows Communications
  • Anomalous Connection / New or Uncommon Service Control
  • Compromise / Unusual SVCCTL Activity
  • Compromise / Rare Domain Pointing to Internal IP
  • Anomalous File / Masqueraded File Transfer

RESPOND Models

  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block

IoC一覧

IoC - Type - Description

/C558B828.Png - URI - URI for Purple Fox Rootkit [4]

5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)

190.4.210[.]242 - IP - Purple Fox C2 Servers

218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)

180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)

103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

MITRE ATT&CK マッピング

Tactic - Technique

Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002

Resource Development - Obtain Capabilities: Malware T1588.001

Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001

Initial Access - Drive-by Compromise T1189

Defense Evasion - Masquerading T1036

Credential Access - Brute Force T1110

Discovery - Network Service Discovery T1046

Command and Control - Proxy: External Proxy T1090.002

参考文献

  1. https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
  2. https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
  3. https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
  4. https://www.foregenix.com/blog/an-overview-on-purple-fox
  5. https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
続きを読む
著者について
Piramol Krishnan
Cyber Security Analyst

$70 Million in Cyber Security Funding for Electric Cooperatives & Utilities

Default blog imageDefault blog image
22
Nov 2023

What is the Bipartisan Infrastructure Deal?

The Bipartisan Infrastructure Law passed by congress in 2021 aimed to upgrade power and infrastructure to deliver clean, reliable energy across the US to achieve zero-emissions. To date, the largest investment in clean energy, the deal will fund new programs to support the development and deployment of clean energy technology.

Why is it relevant to electric municipalities?

Section 40124 of the Bipartisan Infrastructure Law allocates $250 million over a 5-year period to create the Rural and Municipal Utility Cybersecurity (RMUC) Program to help electric cooperative, municipal, and small investor-owned utilities protect against, detect, respond to, and recover from cybersecurity threats.1 This act illuminates the value behind a full life-cycle approach to cyber security. Thus, finding a cyber security solution that can provide all aspects of security in one integrated platform would enhance the overall security posture and ease many of the challenges that arise with adopting multiple point solutions.

On November 16, 2023 the Office of Cybersecurity, Energy Security, and Emergency Response (CESER) released the Advanced Cybersecurity Technology (ACT) for electric utilities offering a $70 million funding opportunity that aims to enhance the cybersecurity posture of electric cooperative, municipal, and small investor-owned utilities.

Funding Details

10 projects will be funded with application submissions due November 29, 2023, 5:00 pm ET with $200,000 each in cash prizes in the following areas:

  1. Direct support for eligible utilities to make investments in cybersecurity technologies, tools, training, and improvements in utility processes and procedures;
  2. Funding to strengthen the peer-to-peer and not-for-profit cybersecurity technical assistance ecosystem currently serving eligible electric utilities; and
  3. Increasing access to cybersecurity technical assistance and training for eligible utilities with limited cybersecurity resources. 2

To submit for this award visit: https://www.herox.com/ACT1Prize

How can electric municipalities utilize the funding?

While the adoption of hybrid working patterns increase cloud and SaaS usage, the number of industrial IoT devices also continues to rise. The result is decrease in visibility for security teams and new entry points for attackers. Particularly for energy and utility organizations.

Electric cooperatives seeking to enhance their cyber security posture can aim to invest in cyber security tools that provide the following:

Compliance support: Consider finding an OT security solution that maps out how its solutions and features help your organization comply with relevant compliance mandates such as NIST, ISA, FERC, TSA, HIPAA, CIS Controls, and more.

Anomaly based detection: Siloed security solutions also fail to detect attacks that span
the entire organization. Anomaly-based detection enhances an organization’s cyber security posture by proactively defending against potential attacks and maintaining a comprehensive view of their attack surface.

Integration capabilities: Implementation of several point solutions that complete individual tasks runs the risk of increasing workloads for operators and creates additional challenges with compliance, budgeting, and technical support. Look for cyber security tools that integrate with your existing technologies.

Passive and active asset tracking: Active Identification offers accurate enumeration, real time updates, vulnerability assessment, asset validation while Passive Identification eliminates the risk of operational disruption, minimizes risk, does not generate additional network traffic. It would be ideal to find a security solution that can do both.

Can secure both IT and OT in unison: Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, a mature security posture for critical infrastructure would include a single solution for both IT and OT. Separate solutions for IT and OT present challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. These independent solutions also significantly increase operator workload and materially diminish risk mitigation efforts.

Darktrace/OT for Electric Cooperatives and Utilities

For smaller teams with just one or two dedicated employees, Darktrace’s Cyber AI Analyst and Investigation features allow end users to spend less time in the platform as it compiles critical incidents into comprehensive actionable event reports. AI Analyst brings all the information into a centralized view with incident reporting in natural language summaries and can be generated for compliance reports specific to regulatory requirements.  

For larger teams, Darktrace alerts can be forwarded to 3rd party platforms such as a SIEM, where security team decision making is augmented. Additionally, executive reports and autonomous response reduce the alert fatigue generally associated with legacy tools. Most importantly, Darktrace’s unique understanding of normal allows security teams to detect zero-days and signatureless attacks regardless of the size of the organization and how alerts are consumed.

Key Benefits of Darktrace/OT

Figure 1: Darktrace/OT stops threats moving from IT to OT by providing a unified view across both systems

参考文献

1. https://www.whitehouse.gov/briefing-room/statements-releases/2021/11/06/fact-sheet-the-bipartisan-infrastructure-deal/

2. https://www.energy.gov/ceser/rural-and-municipal-utility-advanced-cybersecurity-grant-and-technical-assistance-rmuc

続きを読む
著者について
Jeff Cornelius
EVP, Cyber-Physical Security

Good news for your business.
Bad news for the bad guys.

無償トライアルを開始

無償トライアルを開始

柔軟な導入
Cloud-based deployment.
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
フォームを送信する際に何らかの問題が発生しました。

デモを見る

柔軟な導入
仮想的にインストールすることも、ハードウェアでインストールすることも可能です。
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。