Blog

Thought Leadership

2023年のサイバーセキュリティ5つの予測

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Dec 2022
13
Dec 2022
This blog walks through five key trends we expect to observe in the cyber threat and cyber defense landscape in the next 12 months.

2022年 サイバーセキュリティの振り返り

2022年が終わろうとしている今、ハイブリッドワークやフレキシブルワークが広く受け入れられ、ゼロトラスト原則が主流となり、デジタルランドスケープがますます複雑化し、ロシアのウクライナ侵攻によって地政学的状況が悪化しています。

このような新たな挑戦は、ランサムウェアの蔓延や、攻撃的なサイバーツールの商業利用の可能性増大など、より身近な脅威のベクトルとともに、CISOやセキュリティチームの悩みの種となっています。

しかし、サイバー情勢は常に変化しているのです。以下では、Darktrace チームに所属する様々なアナリストや専門家から得た、2023年に出現すると予想される5つの重要な予測について紹介します。 

1)攻撃者はアイデンティティとMFAを中心とした戦術を立てる

被害者の多要素認証(MFA)が侵害されたのは、最近のUberの攻撃だけではありません。サイバー事件の大半の核心は、正当な認証情報の盗難と乱用です。Uberのケースでは、MFAが破られる可能性があること、そしてOktaでは、MFA企業自体がターゲットとなり、他の顧客環境での有効性を低下させる仕組みとなる可能性があることがわかりました。 

かつてクレデンシャルスタッフィングとの戦いにおいて「銀の弾丸」と考えられていたMFAですが、攻撃者がMFAの弱点を発見・悪用するのにさほど時間はかからず、2023年も同種の攻撃は継続するでしょう。MFAは、基本的なサイバー衛生にとって肝要であることに変わりはないものの、単独で「設定すれば後はおまかせ」できるソリューションと見なされることはなくなるでしょう。NFAのアクセシビリティとユーザビリティに関する疑念は、引き続きMFAに関する主要議題となり、従来のオンプレミス型ネットワークに代わってクラウドとSaaSの利用が増加することで、さらに増幅されると考えられます。 

ゼロトラストアーキテクチャでは、従業員の挙動を把握し、特定のクレデンシャルを使って実行されたアクションを認証するために挙動ベースの分析を行うことが肝要ですが、2023年以降、MFAはこのようなゼロトラストアーキテクチャにおける構成要素の1つと見なされることになるでしょう。

2)継続的な「ハクティビズム」

非国家主体によるハクティビズムが、サイバーアトリビューションとセキュリティ戦略を複雑にしており、サイバー地政学に対するいわゆる「自警団」的アプローチが台頭しています。Killnetのようなグループによる最近の攻撃は、その作戦上の影響力は限定的であったものの、ロシアとウクライナの紛争に関連させて世界中のニュースの見出しを独占することを目的としており、こうした市民主導の作戦がより破壊的になる可能性、さらに国家がこうしたグループを代理人として悪用する可能性があるという懸念を高めています。

しかし、「ロシア」がこれらの攻撃を開始したという主張は誤解を招く恐れがあり、やがて複雑な政治的火種を増やすことになります。サイバー攻撃の帰属(アトリビューション)や国家レベルのミッションの範囲を読み解くことは難しく、国家と連携している、国家が関与している、あるいは国家が指揮しているなどの線引きが曖昧なため、エスカレーションや巻き添え、誤認識のリスクが高まっているのです。 

2023年はサイバー空間において「敵を知る」ことがこれまで以上に複雑な作業になります。とはいえ、組織はサイバーリスクの現実を認識し、センセーショナルな報道で取り上げられるインターネット上のBoogie Man(怪物)に注目し過ぎないようにすることが重要です。APTグループに典型的に見られるような最新かつ巧妙なエクスプロイトキットやランサムウェアよりも、持続的かつ広く入手可能で低精巧なマルウェアやありふれたフィッシングキャンペーンの方が、統計的には企業にとって大きなグローバルリスクであり続けているのです。敵の名前を挙げることはますます難しくなっており、企業はニュースの見出しから離れ、各社固有のリスクプロファイルを独自に理解することでビジネスの安定性を確保する、という方向に向かうことが重要です。

3) クリプトジャックの放置が危険な状態に

暗号通貨をマイニングするためのコンピュータリソースの乗っ取りは、世界的に最も急速に拡大しているサイバー脅威の1つです。このような攻撃は直接的には脅威にならない「バックグラウンドノイズ」として見過ごされがちですが、実際には、暗号通貨マイニングに伴って発生するあらゆる異常は、指一本でランサムウェア、データの流出、さらには人為的な攻撃の入口となる可能性を秘めています。 

クリプトジャッカーが渇望するような規模のマイニングを展開するためには、不正なネットワークアクセスが、ソフトウェアの脆弱性や、弱いかもしくはデフォルトのままの認証情報など、比較的低コストで突くことができる弱点を土台にして実現できる必要があります。このことは、基本的な対策がどこかで正しく行われていないことを意味し、クリプトジャッカーがこれらを悪用できるのであれば、ランサムウェアの実行者が同じ道を辿ることを止めることはできないでしょう。 

2023年には、クリプトジャッカーはますます有能になり、通常であれば不可避あるいは無視してもよいと考えられていることが、有害な影響を及ぼすようになるかもしれません。セキュリティリーダーは「この人物はどうやって侵入したのだろう?」と自問自答する必要があります。その上で、自社に対する最も容易な侵入経路を補強する必要があります。 

エネルギー価格の上昇により、不正な暗号通貨マイニングがより大きな経済的損失をもたらすことが予想されます。企業は不正なソフトウェアやハッカーにリソースを吸い取られるような事態を避ける必要があります。 

4) ランサムウェアがクラウド環境に殺到する

ランサムウェア攻撃は常に進化しており、組織におけるクラウドの導入と依存度が急増するのに伴い、攻撃者もクラウド上のデータを追い続けることになるでしょう。2023年は、ランサムウェアのシナリオにおいて、暗号化に代わってクラウドの特性を悪用したデータ漏えいが増加する可能性があります。 

サードパーティーのサプライチェーンは、犯罪を企図する者に対してより多くの隠れ場所を提供し、単一の組織ではなくクラウドプロバイダーをターゲットにすることで、攻撃者はより多くの利益を得ることができるのです。これは、2022年10月初旬にVice Societyというランサムウェア集団が、米国で2番目に大きな学区であるロサンゼルス統一学区(LAUSD)を脅迫し、銀行の詳細情報や生徒の精神健康状態などの高度な機密情報をダークネット上に公開した際に、既に教育分野に甚大な影響を与えた手口でもあります。 

5) プロアクティブなサイバー防御

サイバーセキュリティは取締役会の問題ですが、経済の不透明感が増す中、組織は2023年の予算計画を立案するに当たり厳しい決断を迫られています。サイバー保険の保険料が高騰していますが、国家に起因するサイバー攻撃に対する免責条項を追記する保険会社が増えているため、組織はこのような高い保険料に見合う価値を見出すのに苦労しています。保険もコンプライアンスも、真の運用保証を得ることなく「保護」のチェックボックスにチェックを入れる方法と考えられてきましたが、長期的な事業の中断や風評被害を保険で補うことができないことは、コロニアルパイプラインの事例を見れば明らかです。 

2023年、最高情報セキュリティ責任者(CISO)は単なる保険やチェックボックス式のコンプライアンス順守に留まらず、予算削減の中で投資利益率(ROI)を最大化するために、よりプロアクティブなサイバーセキュリティ対策を選択し、サイバーレジリエンスを継続的に向上させるツールや機能への投資にシフトしていくことでしょう。 

エシカルハッキング、ペンテスト、レッドチームといった人間主導の手段は、もはやリソースとして希少かつ高価です。CISOは、攻撃者が辿る経路を前もって把握したり、レッドチーミングを実行したりするなど、脆弱性の最小化・システムの堅牢化を目的として、今後は人工知能(AI)主導の手法に目を向けることになるでしょう。また、成熟度モデル(CMMC)やエンドツーエンドのソリューションも重要であり、バックグラウンドで継続的に防御力をテストすることの有効性について、CISOと取締役会の間で率直なコミュニケーションが必要になるでしょう。

NEWSLETTER

Like this and want more?

最新の業界ニュースやインサイトをお届けします。
You can unsubscribe at any time. Privacy Policy
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Toby Lewis
Head of Threat Analysis

Prior to joining Darktrace, Toby spent 15 years in the UK Government’s cyber security threats response unit, including as the UK National Cyber Security Centre’s Deputy Technical Director for Incident Management. He has specialist expertise in Security Operations, having worked across Cyber Threat Intelligence, Incident Management, and Threat Hunting. He has presented at several high-profile events, including the NCSC’s flagship conference, CyberUK, the SANS CyberThreat conference, and the Cheltenham Science Festival. He was a lead contributor to the first CyberFirst Girls Competition, championing greater gender diversity in STEM and cyber security. Toby is a Certified Information Systems Security Professional (CISSP) and holds a Master’s in Engineering from the University of Bristol.

この記事を共有
USE CASES
該当する項目はありません。
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

Inside the SOC

PurpleFox in a Henhouse: How Darktrace Hunted Down a Persistent and Dynamic Rootkit

Default blog imageDefault blog image
27
Nov 2023

Versatile Malware: PurpleFox

As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.

One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.

The Evolution of PurpleFox

The Original Strain

First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.  

Subsequent Variants

Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.

The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.

Darktrace detection of PurpleFox

In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.

Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.

While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.

攻撃の概要

Figure 1: Timeline of PurpleFox malware kill chain.

Initial Scanning over SMB

On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.

This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

Figure 2: Cyber AI Analyst technical details summarizing the initial scanning activity seen with the internal network scan over port 445.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

Figure 3: The affected device’s Model Breach Event Log showing the initial scanning activity observed by Darktrace DETECT and the corresponding suggested RESPOND action.

特権昇格

The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.

Exploitation

Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.

Figure 4: PurpleFox remote service control activity captured by a Darktrace DETECT model breach.
Figure 5: The infected device’s Model Breach Event Log showing the anomalous service control activity being picked up by DETECT.

There are a few MSIEXEC flags to note:

  • /i : installs or configures a product
  • /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required

Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Figure 6: The infected device’s Model Breach Event Log showing the outbound activity corresponding to PurpleFox’s wormlike spread. This was caught by DETECT and the corresponding suggested RESPOND action.

Installation

On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.

The first connection was made with the URI ‘/test.png’.  It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.

The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.

Figure 7: Packet Capture from an affected customer device showing the initial HTTP requests to the payload server.
Figure 8: Packet Capture showing the HTTP requests to download the payloads.

The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Figure 9: PCAP from the affected customer device showing the Windows Installer user-agent associated with the .PNG file download.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.

By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.  

Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.

In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.

Figure 10: Cyber AI Analyst technical details summarizing the downloads of the PurpleFox payload.
Figure 11 (a): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.
Figure 11 (b): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.

If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.

結論

The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indictors of compromise (IoCs), necessitating a more sophisticated approach to threat detection.  

Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.  

By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.

Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore

付録

Darktraceによるモデル検知

  • Device / Increased External Connectivity
  • Device / Large Number of Connections to New Endpoints
  • Device / SMB Session Brute Force (Admin)
  • Compliance / External Windows Communications
  • Anomalous Connection / New or Uncommon Service Control
  • Compromise / Unusual SVCCTL Activity
  • Compromise / Rare Domain Pointing to Internal IP
  • Anomalous File / Masqueraded File Transfer

RESPOND Models

  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block

IoC一覧

IoC - Type - Description

/C558B828.Png - URI - URI for Purple Fox Rootkit [4]

5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)

190.4.210[.]242 - IP - Purple Fox C2 Servers

218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)

180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)

103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

MITRE ATT&CK マッピング

Tactic - Technique

Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002

Resource Development - Obtain Capabilities: Malware T1588.001

Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001

Initial Access - Drive-by Compromise T1189

Defense Evasion - Masquerading T1036

Credential Access - Brute Force T1110

Discovery - Network Service Discovery T1046

Command and Control - Proxy: External Proxy T1090.002

参考文献

  1. https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
  2. https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
  3. https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
  4. https://www.foregenix.com/blog/an-overview-on-purple-fox
  5. https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
続きを読む
著者について
Piramol Krishnan
Cyber Security Analyst

$70 Million in Cyber Security Funding for Electric Cooperatives & Utilities

Default blog imageDefault blog image
22
Nov 2023

What is the Bipartisan Infrastructure Deal?

The Bipartisan Infrastructure Law passed by congress in 2021 aimed to upgrade power and infrastructure to deliver clean, reliable energy across the US to achieve zero-emissions. To date, the largest investment in clean energy, the deal will fund new programs to support the development and deployment of clean energy technology.

Why is it relevant to electric municipalities?

Section 40124 of the Bipartisan Infrastructure Law allocates $250 million over a 5-year period to create the Rural and Municipal Utility Cybersecurity (RMUC) Program to help electric cooperative, municipal, and small investor-owned utilities protect against, detect, respond to, and recover from cybersecurity threats.1 This act illuminates the value behind a full life-cycle approach to cyber security. Thus, finding a cyber security solution that can provide all aspects of security in one integrated platform would enhance the overall security posture and ease many of the challenges that arise with adopting multiple point solutions.

On November 16, 2023 the Office of Cybersecurity, Energy Security, and Emergency Response (CESER) released the Advanced Cybersecurity Technology (ACT) for electric utilities offering a $70 million funding opportunity that aims to enhance the cybersecurity posture of electric cooperative, municipal, and small investor-owned utilities.

Funding Details

10 projects will be funded with application submissions due November 29, 2023, 5:00 pm ET with $200,000 each in cash prizes in the following areas:

  1. Direct support for eligible utilities to make investments in cybersecurity technologies, tools, training, and improvements in utility processes and procedures;
  2. Funding to strengthen the peer-to-peer and not-for-profit cybersecurity technical assistance ecosystem currently serving eligible electric utilities; and
  3. Increasing access to cybersecurity technical assistance and training for eligible utilities with limited cybersecurity resources. 2

To submit for this award visit: https://www.herox.com/ACT1Prize

How can electric municipalities utilize the funding?

While the adoption of hybrid working patterns increase cloud and SaaS usage, the number of industrial IoT devices also continues to rise. The result is decrease in visibility for security teams and new entry points for attackers. Particularly for energy and utility organizations.

Electric cooperatives seeking to enhance their cyber security posture can aim to invest in cyber security tools that provide the following:

Compliance support: Consider finding an OT security solution that maps out how its solutions and features help your organization comply with relevant compliance mandates such as NIST, ISA, FERC, TSA, HIPAA, CIS Controls, and more.

Anomaly based detection: Siloed security solutions also fail to detect attacks that span
the entire organization. Anomaly-based detection enhances an organization’s cyber security posture by proactively defending against potential attacks and maintaining a comprehensive view of their attack surface.

Integration capabilities: Implementation of several point solutions that complete individual tasks runs the risk of increasing workloads for operators and creates additional challenges with compliance, budgeting, and technical support. Look for cyber security tools that integrate with your existing technologies.

Passive and active asset tracking: Active Identification offers accurate enumeration, real time updates, vulnerability assessment, asset validation while Passive Identification eliminates the risk of operational disruption, minimizes risk, does not generate additional network traffic. It would be ideal to find a security solution that can do both.

Can secure both IT and OT in unison: Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, a mature security posture for critical infrastructure would include a single solution for both IT and OT. Separate solutions for IT and OT present challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. These independent solutions also significantly increase operator workload and materially diminish risk mitigation efforts.

Darktrace/OT for Electric Cooperatives and Utilities

For smaller teams with just one or two dedicated employees, Darktrace’s Cyber AI Analyst and Investigation features allow end users to spend less time in the platform as it compiles critical incidents into comprehensive actionable event reports. AI Analyst brings all the information into a centralized view with incident reporting in natural language summaries and can be generated for compliance reports specific to regulatory requirements.  

For larger teams, Darktrace alerts can be forwarded to 3rd party platforms such as a SIEM, where security team decision making is augmented. Additionally, executive reports and autonomous response reduce the alert fatigue generally associated with legacy tools. Most importantly, Darktrace’s unique understanding of normal allows security teams to detect zero-days and signatureless attacks regardless of the size of the organization and how alerts are consumed.

Key Benefits of Darktrace/OT

Figure 1: Darktrace/OT stops threats moving from IT to OT by providing a unified view across both systems

参考文献

1. https://www.whitehouse.gov/briefing-room/statements-releases/2021/11/06/fact-sheet-the-bipartisan-infrastructure-deal/

2. https://www.energy.gov/ceser/rural-and-municipal-utility-advanced-cybersecurity-grant-and-technical-assistance-rmuc

続きを読む
著者について
Jeff Cornelius
EVP, Cyber-Physical Security

Good news for your business.
Bad news for the bad guys.

無償トライアルを開始

無償トライアルを開始

柔軟な導入
Cloud-based deployment.
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
フォームを送信する際に何らかの問題が発生しました。

デモを見る

柔軟な導入
仮想的にインストールすることも、ハードウェアでインストールすることも可能です。
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。