Blog

Inside the SOC

Gozi-ISFB: Darktraceが千の顔を持つマルウェアを検知

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Apr 2023
26
Apr 2023
機密情報を盗むために設計されたバンキングトロージャンは、セキュリティツールからの検知を回避するために常に適応しています。Gozi-ISFB は、最近懸念されているこれらのバンキングトロージャンの 1 つです。Darktraceの自己学習型AIがこれらの攻撃をどのように発見できたかについて、詳細をお読みください。

サイバーセキュリティ環境の全体的な成長とセキュリティツールの機能の進化を反映し、脅威アクターは常に歩調を合わせることを余儀なくされています。今日、脅威アクターは新種のマルウェアを野放しにして、新たな攻撃ベクトルを作り出し、セキュリティツールの検知を回避する方法を見つけ出しています。 

このマルウェアは、攻撃者が金銭的な利益を得るために使用する銀行口座情報などの機密情報を盗むように設計されたマルウェアの一種です。Gozi-ISFBは、「千の顔を持つマルウェア」と呼ばれ、その名前が示すように、Gozi、Ursnif、Papras、Rovnixなど、さまざまな名前で知られているバンキングトロイの木馬として広く知られています。

2022年11月から2023年1月にかけて、Gozi-ISFBマルウェア関連のアクティビティの増加がDarktrace の顧客環境で観測され、Darktrace の脅威調査チームによって深堀調査されました。自己学習型AIを活用し、Darktrace は脅威アクターが利用する攻撃ベクトルや配信方法にかかわらず、このバンキングトロイの木馬に関連するアクティビティを特定することができました。

私たちは、観測された一連の活動がGozi-ISFBマルウェアに関連するものであることを中程度から高信頼度で確認し、特定された侵害の指標がGozi-ISFBマルウェアによる侵害後の活動に関連するものであることを高信頼度で確認しました。 

Gozi-ISFBの背景

Gozi-ISFBは、2011年に初めて観測されたマルウェアで、別のマルウェアファミリーであるGozi v1のソースコードに由来し、そのマルウェアはUrsnifマルウェアの亜種からソースコードを借用しています。  

通常、Gozi-ISFBの初期アクセスペイロードは、エンドポイントが自分のデバイスでマクロを有効にすることを要求し、その後、攻撃者が制御するサーバーからコンパイル済みの実行ファイル(.exe)を収集し、あとでターゲットデバイス上で実行することを可能にします。

しかし、最近、Gozi-ISFBは、組織のネットワークにアクセスするために、より高度な機能を使用していることが確認されています。これらの機能は、認証情報の取得、ユーザーのキー操作の監視、銀行ウェブサイトからのブラウザトラフィックの流用、リモートデスクトップアクセス、ドメイン生成アルゴリズム(DGA)を使用してコマンド&コントロール(C2)ドメインを作成し、従来のセキュリティツールの検知やブロッキングを回避するなど、多岐にわたっています。 

最終的にGozi-ISFBマルウェアの目的は、C2サーバーに接続し、ネットワーク上に追加のマルウェアモジュールをインストールすることで、感染デバイスから機密情報を収集することです。 

Gozi-ISFBに対するDarktraceのカバレッジ 

従来のセキュリティアプローチとは異なり、Darktrace DETECT /Network™ は、Darktraceモデルが、IoC (Indicator of Compromise) やルール、シグネチャの静的リストを使うのではなく、デバイスの通常の行動パターンを理解した上で構築するため、悪意のある活動を特定することができます。そのため、Darktraceは、通常とは異なるSMB接続や、新たに作成された悪意のあるエンドポイントまたはC2インフラストラクチャへの接続などのアクティビティに従事し、期待される行動パターンから逸脱する侵害されたデバイスを即座に検知することができます。Darktraceが悪意のある活動を検知した場合、自動的にアラートが発せられ、セキュリティ上の懸念が発生していることが顧客に通知されます。 

Gozi-ISFBの攻撃プロセスについて、最初の攻撃ベクトルは一般的に標的型フィッシングキャンペーンで、受信者はマクロやZIPアーカイブファイルを含むMicrosoft Officeドキュメントを添付したEメールを受け取ります。Darktrace は顧客ベースでこのような悪意のあるEメールを頻繁に観察し、Darktrace/Email™を使って自律的に検知・対処することが可能です。以下のケースでは、Darktrace/Emailを導入している顧客は、企業のEメールインフラを通じた侵害の証拠がないため、個人のEメールアカウントにアクセスすることでデバイスが侵害された可能性が高いと考えられます。また、Darktrace/Emailがネットワーク上で有効になっていないケースもありました。

フィッシングメールに含まれる悪意のある添付ファイルをダウンロードして開くと、ペイロードはその後、追加の.exeまたはダイナミックリンクライブラリ(DLL)をデバイスにダウンロードします。このダウンロードの後、マルウェアは最終的に感染したデバイスから機密データの収集を開始し、Gozi-ISFBに関連するC2サーバーにデータを流出させます。Darktraceは、複数の顧客環境において、Gozi-ISFBマルウェアの取得とそれに続く悪意のある通信を実証し、検知することができました。 

Darktrace は、このデバイスがこの宛先エンドポイントに対して通常とは異なる認証情報を使用していることを認識し、さらに「 \62.173.138[.]28Agenzia 」という共有に対してSMB読み込みを行っていることを確認しました。またDarktrace は、図1に見られるように、この接続から実行ファイルである entrat.exe がダウンロードされることも確認しました。

図1:感染したデバイスが共有 '\62.173.138[.]28Agenzia' 上でSMB読み取りアクションを実行していることを示すモデル侵害イベントログ。Darktraceは、デバイスがこの接続から実行ファイル「entrat.exe」をダウンロードするのを観察しました。

その後、デバイスは、デバイスの名前と同じクレデンシャルを使用して、同じ外部エンドポイントに別のSMBログインを実行しました。その直後、デバイスは、ルート共有ドライブから同じエンドポイントへのファイルパスのSMBディレクトリクエリを実行しました。 

図2: ルート共有ドライブから、同じエンドポイントである 62.173.138[.]28 へのファイルパスのSMBディレクトリクエリを実施

脅威リサーチチームが調査したGozi-ISFBの侵害では、Darktrace は「Rare Hostnameへの複数のHTTP POST」と「Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64)」のユーザーエージェントを使用したモデルブリーチを頻繁に観測しました。 

さらに、Gozi-ISFB に関連するエンドポイントに対して、80番ポート(TCP、HTTP)を介した外部接続が確認されました。これらの接続について、C2通信は、接続の中で画像に関連すると主張するURIパスとリソースファイルの拡張子の構成を使用していることが確認されましたが、実際にはGETまたはPOSTリクエストURIでした。これは、脅威アクターがレーダーをかいくぐってセキュリティチームの検知を逃れるためによく使われる手口です。  

このタイプのマスカレードされたURIの例を以下に示します:

脅威リサーチチームが調査した別の同様の例では、DarktraceがGozi-ISFBマルウェアに関連する同様の外部接続を検知しました。このケースでは、DETECTは2つの別々のホスト名、すなわち「gameindikdowd[.]ru」と「jhgfdlkjhaoiu[.]su」への外部接続を特定しました。この特定の検知には、エンドポイント gameindikdowd[.]ru へのHTTPビーコン接続が含まれていました。

このイベントから観察された詳細: 

宛先IP:134.0.118[.]203

宛先ポート:80

ASN: AS197695 ドメイン名レジストラ REG.RU, Ltd.

ユーザーエージェント:Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64)

その後、同じデバイスが、Gozi-ISFBの既知のエンドポイントであるjhgfdlkjhaoiu[.]suに異常なHTTP POSTリクエストを行いました。 

観察された詳細:

宛先ポート:80

ASN: AS197695 ドメイン名レジストラ REG.RU, Ltd.

ユーザーエージェント:Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64)

図3:Gozi-ISFB関連のIOC「jhgfdlkjhaoiu[.]su」に対して異常なHTTP POSTリクエストを行うデバイスによるパケットキャプチャー(PCAP)。

結論 

攻撃インフラが絶えず変化し、新しい攻撃方法が刻々と試され、活用される中、セキュリティチームにとって、侵害による重大な損害を回避するために、先手を打つためのツールを採用することは非常に重要です。  

Darktrace は、Gozi-ISFB のような適応力の高いマルウェアに直面した際、既知の IoC や攻撃ベクターだけでなく、それ以上のものに基づいて悪意のある活動を自律的に検知する能力を発揮しました。脅威アクターが利用するさまざまな攻撃ベクトルにもかかわらず、Darktrace は異常な活動や通常の生活パターンからの逸脱を識別するためのアノマリーベースの検知を使用して、キルチェーンのさまざまな段階でGozi-ISFBの活動を検知することができました。自己学習型AIを使用することで、Darktrace は感染したデバイスを特定し、お客様のセキュリティチームの注意を喚起することに成功し、最終的に感染がさらなる侵害につながることを防止しました。  

DETECT/Networkを含むDarktrace の製品群は、ネットワークに対する脅威を自律的に識別してリアルタイムに対応し、疑わしい活動が有害なネットワーク侵害につながるのを防ぐ比類のないレベルのネットワークセキュリティをお客様に提供するユニークな立場にあります。

Credit to: Paul Jennings, Principal Analyst Consultant and the Threat Research Team

付録

IoC一覧

134.0.118[.]203 - IP Address - Gozi-ISFB C2 Endpoint

62.173.138[.]28 - IP Address - Gozi-ISFB  C2 Endpoint

45.130.147[.]89 - IP Address - Gozi-ISFB  C2 Endpoint

94.198.54[.]97 - IP Address - Gozi-ISFB C2 Endpoint

91.241.93[.]111 - IP Address - Gozi-ISFB  C2 Endpoint

89.108.76[.]56 - IP Address - Gozi-ISFB  C2 Endpoint

87.106.18[.]141 - IP Address - Gozi-ISFB  C2 Endpoint

35.205.61[.]67 - IP Address - Gozi-ISFB  C2 Endpoint

91.241.93[.]98 - IP Address - Gozi-ISFB  C2 Endpoint

62.173.147[.]64 - IP Address - Gozi-ISFB C2 Endpoint

146.70.113[.]161 - IP Address - Gozi-ISFB  C2 Endpoint 

iujdhsndjfks[.]ru - Hostname - Gozi-ISFB C2 Hostname

reggy505[.]ru - Hostname - Gozi-ISFB  C2 Hostname

apr[.]intoolkom[.]at - Hostname - Gozi-ISFB  C2 Hostname

jhgfdlkjhaoiu[.]su - Hostname - Gozi-ISFB  C2 Hostname

gameindikdowd[.]ru - Hostname - Gozi-ISFB  Hostname

chnkdgpopupser[.]at - Hostname – Gozi-ISFB C2 Hostname

denterdrigx[.]com - Hostname – Gozi-ISFB C2 Hostname

entrat.exe - Filename – Gozi-ISFB Related Filename

Darktrace モデルカバレッジ

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Compromise / Agent Beacon (Medium Period)

Anomalous File / Application File Read from Rare Endpoint

Device / Suspicious Domain

Mitre Attack とマッピング

Tactic: Application Layer Protocol: Web Protocols

Technique: T1071.001

Tactic: Drive-by Compromise

Technique: T1189

Tactic: Phishing: Spearphishing Link

Technique: T1566.002

モデル検知

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname - T1071.001

Anomalous Connection / Posting HTTP to IP Without Hostname - T1071.001

Anomalous Connection / New User Agent to IP Without Hostname - T1071.001

Compromise / Agent Beacon (Medium Period) - T1071.001

Anomalous File / Application File Read from Rare Endpoint - N/A

Device / Suspicious Domain - T1189, T1566.002

参考文献

https://threatfox.abuse.ch/browse/malware/win.isfb/

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-216a

https://www.fortinet.com/blog/threat-research/new-variant-of-ursnif-continuously-targeting-italy#:~:text=Ursnif%20(also%20known%20as%20Gozi,Italy%20over%20the%20past%20year

https://medium.com/csis-techblog/chapter-1-from-gozi-to-isfb-the-history-of-a-mythical-malware-family-82e592577fef

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Justin Torres
Cyber Analyst
Book a 1-1 meeting with one of our experts
この記事を共有
USE CASES
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

Inside the SOC

A Thorn in Attackers’ Sides: How Darktrace Uncovered a CACTUS Ransomware Infection

Default blog imageDefault blog image
24
Apr 2024

What is CACTUS Ransomware?

In May 2023, Kroll Cyber Threat Intelligence Analysts identified CACTUS as a new ransomware strain that had been actively targeting large commercial organizations since March 2023 [1]. CACTUS ransomware gets its name from the filename of the ransom note, “cAcTuS.readme.txt”. Encrypted files are appended with the extension “.cts”, followed by a number which varies between attacks, e.g. “.cts1” and “.cts2”.

As the cyber threat landscape adapts to ever-present fast-paced technological change, ransomware affiliates are employing progressively sophisticated techniques to enter networks, evade detection and achieve their nefarious goals.

How does CACTUS Ransomware work?

In the case of CACTUS, threat actors have been seen gaining initial network access by exploiting Virtual Private Network (VPN) services. Once inside the network, they may conduct internal scanning using tools like SoftPerfect Network Scanner, and PowerShell commands to enumerate endpoints, identify user accounts, and ping remote endpoints. Persistence is maintained by the deployment of various remote access methods, including legitimate remote access tools like Splashtop, AnyDesk, and SuperOps RMM in order to evade detection, along with malicious tools like Cobalt Strike and Chisel. Such tools, as well as custom scripts like TotalExec, have been used to disable security software to distribute the ransomware binary. CACTUS ransomware is unique in that it adopts a double-extortion tactic, stealing data from target networks and then encrypting it on compromised systems [2].

At the end of November 2023, cybersecurity firm Arctic Wolf reported instances of CACTUS attacks exploiting vulnerabilities on the Windows version of the business analytics platform Qlik, specifically CVE-2023-41266, CVE-2023-41265, and CVE-2023-48365, to gain initial access to target networks [3]. The vulnerability tracked as CVE-2023-41266 can be exploited to generate anonymous sessions and perform HTTP requests to unauthorized endpoints, whilst CVE-2023-41265 does not require authentication and can be leveraged to elevate privileges and execute HTTP requests on the backend server that hosts the application [2].

Darktrace’s Coverage of CACTUS Ransomware

In November 2023, Darktrace observed malicious actors leveraging the aforementioned method of exploiting Qlik to gain access to the network of a customer in the US, more than a week before the vulnerability was reported by external researchers.

Here, Qlik vulnerabilities were successfully exploited, and a malicious executable (.exe) was detonated on the network, which was followed by network scanning and failed Kerberos login attempts. The attack culminated in the encryption of numerous files with extensions such as “.cts1”, and SMB writes of the ransom note “cAcTuS.readme.txt” to multiple internal devices, all of which was promptly identified by Darktrace DETECT™.

While traditional rules and signature-based detection tools may struggle to identify the malicious use of a legitimate business platform like Qlik, Darktrace’s Self-Learning AI was able to confidently identify anomalous use of the tool in a CACTUS ransomware attack by examining the rarity of the offending device’s surrounding activity and comparing it to the learned behavior of the device and its peers.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled in autonomous response mode during their encounter with CACTUS ransomware meaning that attackers were able to successfully escalate their attack to the point of ransomware detonation and file encryption. Had RESPOND been configured to autonomously act on any unusual activity, Darktrace could have prevented the attack from progressing, stopping the download of any harmful files, or the encryption of legitimate ones.

Cactus Ransomware Attack Overview

Holiday periods have increasingly become one of the favoured times for malicious actors to launch their attacks, as they can take advantage of the festive downtime of organizations and their security teams, and the typically more relaxed mindset of employees during this period [4].

Following this trend, in late November 2023, Darktrace began detecting anomalous connections on the network of a customer in the US, which presented multiple indicators of compromise (IoCs) and tactics, techniques and procedures (TTPs) associated with CACTUS ransomware. The threat actors in this case set their attack in motion by exploiting the Qlik vulnerabilities on one of the customer’s critical servers.

Darktrace observed the server device making beaconing connections to the endpoint “zohoservice[.]net” (IP address: 45.61.147.176) over the course of three days. This endpoint is known to host a malicious payload, namely a .zip file containing the command line connection tool PuttyLink [5].

Darktrace’s Cyber AI Analyst was able to autonomously identify over 1,000 beaconing connections taking place on the customer’s network and group them together, in this case joining the dots in an ongoing ransomware attack. AI Analyst recognized that these repeated connections to highly suspicious locations were indicative of malicious command-and-control (C2) activity.

Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.
Figure 1: Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.

The infected device was then observed downloading the file “putty.zip” over a HTTP connection using a PowerShell user agent. Despite being labelled as a .zip file, Darktrace’s detection capabilities were able to identify this as a masqueraded PuttyLink executable file. This activity resulted in multiple Darktrace DETECT models being triggered. These models are designed to look for suspicious file downloads from endpoints not usually visited by devices on the network, and files whose types are masqueraded, as well as the anomalous use of PowerShell. This behavior resembled previously observed activity with regards to the exploitation of Qlik Sense as an intrusion technique prior to the deployment of CACTUS ransomware [5].

The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.
Figure 2: The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.

Following the download of the masqueraded file, Darktrace observed the initial infected device engaging in unusual network scanning activity over the SMB, RDP and LDAP protocols. During this activity, the credential, “service_qlik” was observed, further indicating that Qlik was exploited by threat actors attempting to evade detection. Connections to other internal devices were made as part of this scanning activity as the attackers attempted to move laterally across the network.

Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.
Figure 3: Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.

The compromised server was then seen initiating multiple sessions over the RDP protocol to another device on the customer’s network, namely an internal DNS server. External researchers had previously observed this technique in CACTUS ransomware attacks where an RDP tunnel was established via Plink [5].

A few days later, on November 24, Darktrace identified over 20,000 failed Kerberos authentication attempts for the username “service_qlik” being made to the internal DNS server, clearly representing a brute-force login attack. There is currently a lack of open-source intelligence (OSINT) material definitively listing Kerberos login failures as part of a CACTUS ransomware attack that exploits the Qlik vulnerabilities. This highlights Darktrace’s ability to identify ongoing threats amongst unusual network activity without relying on existing threat intelligence, emphasizing its advantage over traditional security detection tools.

Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.
Figure 4: Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.

In the month following these failed Kerberos login attempts, between November 26 and December 22, Darktrace observed multiple internal devices encrypting files within the customer’s environment with the extensions “.cts1” and “.cts7”. Devices were also seen writing ransom notes with the file name “cAcTuS.readme.txt” to two additional internal devices, as well as files likely associated with Qlik, such as “QlikSense.pdf”. This activity detected by Darktrace confirmed the presence of a CACTUS ransomware infection that was spreading across the customer’s network.

The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
Figure 5: The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.
Figure 6: CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.

Following this initial encryption activity, two affected devices were observed attempting to remove evidence of this activity by deleting the encrypted files.

Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.
Figure 7: Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.

結論

In the face of this CACTUS ransomware attack, Darktrace’s anomaly-based approach to threat detection enabled it to quickly identify multiple stages of the cyber kill chain occurring in the customer’s environment. These stages ranged from ‘initial access’ by exploiting Qlik vulnerabilities, which Darktrace was able to detect before the method had been reported by external researchers, to ‘actions on objectives’ by encrypting files. Darktrace’s Self-Learning AI was also able to detect a previously unreported stage of the attack: multiple Kerberos brute force login attempts.

If Darktrace’s autonomous response capability, RESPOND, had been active and enabled in autonomous response mode at the time of this attack, it would have been able to take swift mitigative action to shut down such suspicious activity as soon as it was identified by DETECT, effectively containing the ransomware attack at the earliest possible stage.

Learning a network’s ‘normal’ to identify deviations from established patterns of behaviour enables Darktrace’s identify a potential compromise, even one that uses common and often legitimately used administrative tools. This allows Darktrace to stay one step ahead of the increasingly sophisticated TTPs used by ransomware actors.

Credit to Tiana Kelly, Cyber Analyst & Analyst Team Lead, Anna Gilbertson, Cyber Analyst

付録

参考文献

[1] https://www.kroll.com/en/insights/publications/cyber/cactus-ransomware-prickly-new-variant-evades-detection

[2] https://www.bleepingcomputer.com/news/security/cactus-ransomware-exploiting-qlik-sense-flaws-to-breach-networks/

[3] https://explore.avertium.com/resource/new-ransomware-strains-cactus-and-3am

[4] https://www.soitron.com/cyber-attackers-abuse-holidays/

[5] https://arcticwolf.com/resources/blog/qlik-sense-exploited-in-cactus-ransomware-campaign/

Darktrace DETECT Models

Compromise / Agent Beacon (Long Period)

Anomalous Connection / PowerShell to Rare External

Device / New PowerShell User Agent

Device / Suspicious SMB Scanning Activity

Anomalous File / EXE from Rare External Location

Anomalous Connection / Unusual Internal Remote Desktop

User / Kerberos Password Brute Force

Compromise / Ransomware / Ransom or Offensive Words Written to SMB

Unusual Activity / Anomalous SMB Delete Volume

Anomalous Connection / Multiple Connections to New External TCP Port

Compromise / Slow Beaconing Activity To External Rare  

Compromise / SSL Beaconing to Rare Destination  

Anomalous Server Activity / Rare External from Server  

Compliance / Remote Management Tool On Server

Compromise / Agent Beacon (Long Period)  

Compromise / Suspicious File and C2  

Device / Internet Facing Device with High Priority Alert  

Device / Large Number of Model Breaches  

Anomalous File / Masqueraded File Transfer

Anomalous File / Internet facing System File Download  

Anomalous Server Activity / Outgoing from Server

Device / Initial Breach Chain Compromise  

Compromise / Agent Beacon (Medium Period)  

Compromise / Agent Beacon (Long Period)  

IoC一覧

IoC - Type - Description

zohoservice[.]net: 45.61.147[.]176 - Domain name: IP Address - Hosting payload over HTTP

Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17763.2183 - User agent -PowerShell user agent

.cts1 - File extension - Malicious appendage

.cts7- File extension - Malicious appendage

cAcTuS.readme.txt - Filename -Ransom note

putty.zip – Filename - Initial payload: ZIP containing PuTTY Link

MITRE ATT&CK マッピング

Tactic - Technique  - SubTechnique

Web Protocols: COMMAND AND CONTROL - T1071 -T1071.001

Powershell: EXECUTION - T1059 - T1059.001

Exploitation of Remote Services: LATERAL MOVEMENT - T1210 – N/A

Vulnerability Scanning: RECONAISSANCE     - T1595 - T1595.002

Network Service Scanning: DISCOVERY - T1046 - N/A

Malware: RESOURCE DEVELOPMENT - T1588 - T1588.001

Drive-by Compromise: INITIAL ACCESS - T1189 - N/A

Remote Desktop Protocol: LATERAL MOVEMENT – 1021 -T1021.001

Brute Force: CREDENTIAL ACCESS        T – 1110 - N/A

Data Encrypted for Impact: IMPACT - T1486 - N/A

Data Destruction: IMPACT - T1485 - N/A

File Deletion: DEFENSE EVASION - T1070 - T1070.004

続きを読む
著者について
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.