Blog
Inside the SOC
「タマネギ」を成長させる:Darktrace キルチェーンにおけるAutoItマルウェア






はじめに
優れた防御はタマネギのようなもので、何層にも重なっています。セキュリティ実装の各部分には、チェック機能が組み込まれており、1つの壁が破られたとしても、さらに別の事態に対応できるようになっている必要があります。セキュリティの専門家はこれを「深層防護」と呼び、2009年にサイバー領域に導入された軍事的概念です [1]。それ以来、デジタルであれ何であれ、安全なシステムを設計する際の中心的な考え方であり続けています [2]。それにもかかわらず、マルウェアやゼロデイ攻撃は絶えず開発されており、攻撃者の優位性は常に存在しています。セキュリティプラットフォームが何層にも重なっていても、企業は、自分たちが知らない、あるいは理解できない脅威からどうやって身を守ることができるでしょうか。
例えば、Darktraceの顧客で、アメリカ大陸の某所に拠点を置く政府系製造業のお客様のケースを考えてみましょう。この会社は、数千台のデバイスで構成される最新のOTおよびITネットワークを所有しています。数十台のサーバーがあり、そのうちの数台がMicrosoft Exchangeをホストしています。毎週、この数台のメールサーバーは数百の悪意のあるペイロードを受信し、最終的にさまざまなセキュリティゲートウェイを回避しながら、1000以上の異なる受信箱に侵入しようとします。Darktrace EmailのRESPOND の機能が適切に有効化されていれば、ここで話は終わっていたはずです。しかし、2022年6月、ある社員が直感的に下した決断が、会社の時間、資金、そして政府の契約者としての評判を損ねる可能性がありました。彼らの罪は、説得力のあるフィッシングメールに添付された未知のhtmlファイルを開いてしまったことです。
この誤操作の後、ダウンロードが開始され、従来のOSINTソースではほとんど知られていないエンドポイントから、脆弱なMicrosoft管理ツールによってシステムが侵害される結果となりました。これらのツールを使用して、さらに悪意のある接続が行われ、最終的に停止しました。幸いなことに、既存のMicrosoftセキュリティゲートウェイは、今回の侵入で観察されたコマンド&コントロール(C2)ドメインについて最新の情報を持っており、接続を拒否しました。
Darktrace は、最初のメールからダウンロード、その後のC2の試みまで、あらゆる場面でこの活動を検知しました。Cyber AI Analystは、事象を理解しやすいようにつなぎ合わせ、より大きな情報コミュニティでまだフラグが立てられていない IOC(Indicators of Compromise)を検知し、さらに重要なことに、これをすべてマシンスピードで実行しました。
では、なぜ攻撃者はこれほど長い間、行動を回避できたのだろうでしょうか。その答えは、製品の設定ミスです。彼らは「レイヤー」を洗練させなかったのです。
攻撃の詳細
6月8日の夜、ある従業員が悪意のあるメールを受け取りました。Darktrace は、このメールにhtmlの添付ファイルがあり、それ自体にネットワークに100%接続できないエンドポイントへのリンクが含まれていることを検知しました。また、このメールは、これまで見たことのない送信者から発信されていました。通常であれば、これらの要因に基づいて保留されるはずですが、このお客様のDarktrace/Email の配備はアドバイザリーモードに設定されていたため、受信トレイまでそのまま続行されることになりました。翌日遅く、このユーザーが添付ファイルを開くと、100%稀なエンドポイント xberxkiw[.]club に転送されましたが、これは当時のOSINTには登録されていなかったマルウェアのランディングページと思われました。

エンドポイントに到達してからわずか数秒後、Darktrace は、Microsoft BITS ユーザーエージェントが、100%稀な別のエンドポイントyrioer[.]mikigertxyss[.]com に到達したことを検知し、Unusual BITS Activity というDETECT/Network モデル違反が発生したのです。BITSは、非推奨の安全でないWindows管理ツールであり、悪意のあるペイロードをネットワーク内外に移動させることが知られているため、これは直ちに疑わしいと判断されました。接続の確立に成功すると、感染したデバイスは、自称.zipファイルのダウンロードを開始しました。しかし、Darktrace がこのファイルは、拡張子が入れ替わった.exeファイルであることが検知しました。この活動のPCAPは、以下の図2で見ることができます。

この活動はまた、Masqueraded File Transfer モデルの関連する違反を引き起こし、Darktrace Proactive Threat Notification (PTN) サービスに高忠実度の警告をプッシュしました。これにより、Darktrace とお客様のSOCチームの双方が異常な活動に対して警告を受けたことが確認されました。
この段階では、ローカルSOCはトリアージを開始していたようです。しかし、従業員のデバイスとネットワークへの侵害を拡大するために、さらなる接続が行われました。ダウンロードされたファイルは、後に AutoIT3.exe であることが判明しました。これは、AutoItスクリプトに付けられるデフォルトのファイル名です。AutoItスクリプトには正当な使用例がありますが、Windows GUIと連動し、クライアントの保護を回避できることから、しばしば悪意のある行為と関連付けられています。これらのスクリプトは、開いた後、ホストデバイス上で起動し、他の弱点を探ります。この場合、スクリプトは、パスワードやデフォルトの認証情報のハント、一般的な機密ファイルのローカルディレクトリのスキャン、デバイス上のローカルウイルス対策ソフトウェアのスカウトを試みている可能性があります。そして、収集した情報は、確立されたC2チャネルを通じて共有されます。
この不一致のMIMEタイプのダウンロードに成功した後、デバイスはエンドポイント dirxhitoq[.]kialsoyert[.]tk へのC2をさらに確立しようとし始めました。OSINTがまだこのエンドポイントにフラグを立てなかったにもかかわらず、Darktrace は、このアウトリーチを疑わしいものとして検知し、ビーコン活動に対する最初のCyber AI Analyst の調査を開始しました。6月10日にこのエンドポイントに行われた6回目の接続の後、感染したデバイスは、Agent Beacon (Long Period) や HTTP Beaconing to Rare Destination といったC2モデルを突破しています。
ビーコンが継続される中、少なくとも2つの他の内部デバイスで同様のIOCが検知されたものの、AutoItからの内部偵察が広く達成されていないことは明らかでした。これは、他のユーザーが同じ悪意あるEメールを開いたか、最初のユーザー/デバイスからのラテラルムーブメントと感染の伝播に成功したことを表しているのかもしれません。しかし、比較的これらのデバイスは最初の従業員のマシンと同じレベルの感染を経験せず、悪意のある実行可能ファイルをダウンロードすることもありませんでした。AutoItは、情報窃取のために使用された経緯があり、より広範なネットワーク侵害が成功した場合の動機となる可能性を示唆しています [3]。
ありがたいことに、6月10日以降、これ以上の悪用は見られなくなりました。これは、PTNアラート、静的セキュリティゲートウェイ、そして現地のセキュリティチームの行動によってもたらされた意識と行動の結集によるものだと思われます。深層防護のおかげで、会社は守られたのです。
Darktrace のカバレッジ
それにもかかわらず、Darktrace 自体の役割は控えめにはできません。Darktrace/Email は、早期発見プロセスに不可欠であり、この攻撃者が使用したベクトルと配信方法に関する洞察を提供しました。侵害後、Darktrace/Networkは、この侵入によってもたらされたあらゆる種類の不審な活動を観察しました。特に、AI Analyst 機能は、初期のIOCのいくつかに関する重要な情報を検知し、フラグを立てることによって、SOCチームがトリアージに要する時間を短縮する上で大きな役割を果たしました。

早期発見と同時に、RESPOND/Networkが介入したであろう事例がいくつかありましたが、自律的な行動は小さなテストグループに限られ、お客様の展開全体で広く有効化されることはありませんでした。そのため、この活動は妨げられることなく継続され、脆弱なレイヤーとなりました。図4は、Darktrace RESPOND が最初に実行したであろうアクションを強調しています。

This Darktrace RESPOND action provides a precise and limited response by blocking the anomalous file download. However, after continued anomalous activity, RESPOND would have strengthened its posture and enforced stronger curbs across the wider anomalous activity. This stronger enforcement is a measure designed to relegate a device to its established norm. The breach which would generate this response can be seen below:

Darktrace RESPOND は完全には有効化されていませんでしたが、この企業は PTN サービスでセキュリティの層を増やし、最初のファイルダウンロードが検知されたわずか数分後に、調査に関連する詳細とともに警告を発しました。これにより、Darktrace のアナリストと自社の社員が活動を確認し、脅威の分離と是正を開始できるようになりました。
総括的な考察
幸いなことに、このお客様は何重にもわたるセキュリティ対策により、この事件からほぼ無傷で脱出することができました。Eメールとネットワークの迅速かつ包括的な検知、顧客への警告、ローカルゲートウェイのC2接続のブロックにより、感染がネットワーク全体に横展開する余地はなかったのです。しかし、この感染が大惨事に至らなかったとはいえ、そもそもこのような事態が発生したという事実は、学習すべき点であると言えます。
RESPOND/Emailが適切に設定されていれば、この脅威は意図した受信者に到達する前に阻止され、セキュリティ対策としてエンドユーザーに依存する必要性がなくなったと考えられます。さらに、RESPOND/Networkが限られたテストグループを超えて利用されていれば、この活動はネットワークレベルのキルチェーンの他のすべてのステップでブロックされていたことでしょう。異常なMIMEのダウンロードからC2の確立まで、Darktrace RESPONDは、更新の遅いOSINTソースに頼ることなく、この活動をホストデバイスに効果的に隔離・検疫できたはずです。RESPOND は時間的制約のあるセキュリティ判断の自動化を可能にし、従来のセキュリティソリューションでは提供できなかった防御の層を強力に追加しています。このような意思決定を人間が行うことは困難ですが、未知の攻撃者が未知のベクトルを使って未知の目的を達成するために侵入することを防ぐためには必要なことです。
結論として、今回のインシデントは、新しいIOCによる脅威の検知に関する効果的な事例を示したものです。しかし、この事件は、企業のセキュリティ体制が常に改善可能であることを思い起こさせるものでもあります。全体として、企業の「タマネギ」の中にセキュリティレイヤーを構築する場合、最良のツールを持つことは当然素晴らしいことですが、それを最適な方法で使用することはさらに重要です。継続的な改良によってのみ、企業は深層部における防御を保証することができるのです。
Connor MooneyとStefan Roweのこのブログへの寄稿に感謝します。
付録
Darktraceによるモデル検知
· Anomalous File / EXE from Rare External Location
· Compromise / Agent Beacon (Long Period)
· Compromise / HTTP Beaconing to Rare Destination
· Device / Large Number of Model Breaches
· Device / Suspicious Domain
· Device / Unusual BITS Activity
· Enhanced Monitoring: Anomalous File / Masqueraded File Transfer


Like this and want more?
More in this series
Blog
Inside the SOC
PurpleFox in a Henhouse: How Darktrace Hunted Down a Persistent and Dynamic Rootkit



Versatile Malware: PurpleFox
As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.
One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.
The Evolution of PurpleFox
The Original Strain
First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.
Subsequent Variants
Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.
The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.
Darktrace detection of PurpleFox
In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.
Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.
While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.
攻撃の概要

Initial Scanning over SMB
On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.
This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

特権昇格
The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.
Exploitation
Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.


There are a few MSIEXEC flags to note:
- /i : installs or configures a product
- /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required
Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Installation
On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.
The first connection was made with the URI ‘/test.png’. It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.
The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.


The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.
By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.
Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.
In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.



If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.
結論
The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indictors of compromise (IoCs), necessitating a more sophisticated approach to threat detection.
Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.
By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.
Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore
付録
Darktraceによるモデル検知
- Device / Increased External Connectivity
- Device / Large Number of Connections to New Endpoints
- Device / SMB Session Brute Force (Admin)
- Compliance / External Windows Communications
- Anomalous Connection / New or Uncommon Service Control
- Compromise / Unusual SVCCTL Activity
- Compromise / Rare Domain Pointing to Internal IP
- Anomalous File / Masqueraded File Transfer
RESPOND Models
- Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
- Antigena / Network / External Threat / Antigena Suspicious Activity Block
- Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
- Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
- Antigena / Network / External Threat / Antigena Suspicious File Block
- Antigena / Network / External Threat / Antigena File then New Outbound Block
IoC一覧
IoC - Type - Description
/C558B828.Png - URI - URI for Purple Fox Rootkit [4]
5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)
190.4.210[.]242 - IP - Purple Fox C2 Servers
218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)
180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)
103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
MITRE ATT&CK マッピング
Tactic - Technique
Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002
Resource Development - Obtain Capabilities: Malware T1588.001
Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001
Initial Access - Drive-by Compromise T1189
Defense Evasion - Masquerading T1036
Credential Access - Brute Force T1110
Discovery - Network Service Discovery T1046
Command and Control - Proxy: External Proxy T1090.002
参考文献
- https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
- https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
- https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
- https://www.foregenix.com/blog/an-overview-on-purple-fox
- https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
Blog
OT
$70 Million in Cyber Security Funding for Electric Cooperatives & Utilities



What is the Bipartisan Infrastructure Deal?
The Bipartisan Infrastructure Law passed by congress in 2021 aimed to upgrade power and infrastructure to deliver clean, reliable energy across the US to achieve zero-emissions. To date, the largest investment in clean energy, the deal will fund new programs to support the development and deployment of clean energy technology.
Why is it relevant to electric municipalities?
Section 40124 of the Bipartisan Infrastructure Law allocates $250 million over a 5-year period to create the Rural and Municipal Utility Cybersecurity (RMUC) Program to help electric cooperative, municipal, and small investor-owned utilities protect against, detect, respond to, and recover from cybersecurity threats.1 This act illuminates the value behind a full life-cycle approach to cyber security. Thus, finding a cyber security solution that can provide all aspects of security in one integrated platform would enhance the overall security posture and ease many of the challenges that arise with adopting multiple point solutions.
On November 16, 2023 the Office of Cybersecurity, Energy Security, and Emergency Response (CESER) released the Advanced Cybersecurity Technology (ACT) for electric utilities offering a $70 million funding opportunity that aims to enhance the cybersecurity posture of electric cooperative, municipal, and small investor-owned utilities.
Funding Details
10 projects will be funded with application submissions due November 29, 2023, 5:00 pm ET with $200,000 each in cash prizes in the following areas:
- Direct support for eligible utilities to make investments in cybersecurity technologies, tools, training, and improvements in utility processes and procedures;
- Funding to strengthen the peer-to-peer and not-for-profit cybersecurity technical assistance ecosystem currently serving eligible electric utilities; and
- Increasing access to cybersecurity technical assistance and training for eligible utilities with limited cybersecurity resources. 2
To submit for this award visit: https://www.herox.com/ACT1Prize
How can electric municipalities utilize the funding?
While the adoption of hybrid working patterns increase cloud and SaaS usage, the number of industrial IoT devices also continues to rise. The result is decrease in visibility for security teams and new entry points for attackers. Particularly for energy and utility organizations.
Electric cooperatives seeking to enhance their cyber security posture can aim to invest in cyber security tools that provide the following:
Compliance support: Consider finding an OT security solution that maps out how its solutions and features help your organization comply with relevant compliance mandates such as NIST, ISA, FERC, TSA, HIPAA, CIS Controls, and more.
Anomaly based detection: Siloed security solutions also fail to detect attacks that span
the entire organization. Anomaly-based detection enhances an organization’s cyber security posture by proactively defending against potential attacks and maintaining a comprehensive view of their attack surface.
Integration capabilities: Implementation of several point solutions that complete individual tasks runs the risk of increasing workloads for operators and creates additional challenges with compliance, budgeting, and technical support. Look for cyber security tools that integrate with your existing technologies.
Passive and active asset tracking: Active Identification offers accurate enumeration, real time updates, vulnerability assessment, asset validation while Passive Identification eliminates the risk of operational disruption, minimizes risk, does not generate additional network traffic. It would be ideal to find a security solution that can do both.
Can secure both IT and OT in unison: Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, a mature security posture for critical infrastructure would include a single solution for both IT and OT. Separate solutions for IT and OT present challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. These independent solutions also significantly increase operator workload and materially diminish risk mitigation efforts.
Darktrace/OT for Electric Cooperatives and Utilities
For smaller teams with just one or two dedicated employees, Darktrace’s Cyber AI Analyst and Investigation features allow end users to spend less time in the platform as it compiles critical incidents into comprehensive actionable event reports. AI Analyst brings all the information into a centralized view with incident reporting in natural language summaries and can be generated for compliance reports specific to regulatory requirements.
For larger teams, Darktrace alerts can be forwarded to 3rd party platforms such as a SIEM, where security team decision making is augmented. Additionally, executive reports and autonomous response reduce the alert fatigue generally associated with legacy tools. Most importantly, Darktrace’s unique understanding of normal allows security teams to detect zero-days and signatureless attacks regardless of the size of the organization and how alerts are consumed.
Key Benefits of Darktrace/OT
- Anomaly-based detection and real-time response
- Secures IT, OT, and IoT in unison
- Active and Passive Asset Identification
- Automated security reporting
- Attack surface management and vulnerability assessment
- Covers all levels of the Purdue Model
.png)
参考文献
