Blog

Threat Finds

Inside the SOC

SOCチームがバンキング型トロイQakBotを無害化

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Jun 2021
13
Jun 2021
Proactive Threat Notifications and Ask The Expert provide around-the-clock support. In a recent case, Darktrace SOC analysts helped a customer handle the QakBot banking trojan before it spread to other devices.

最先端のテクノロジーはデジタルアセットのセキュリティを確保するために不可欠ですが、小規模のセキュリティチームや、デジタル環境内に自律遮断機能がない組織にとっては、脅威に対処するために人によるサポートを随時利用できることが、きわめて大きな価値を持つ場合があります。

サイバーAI技術はバンキング型トロイの一種であるQakBotを顧客の環境で検知しました。DarktraceのSOCチームの支援により、この顧客は2時間以内に攻撃をシャットアウトすることができました。

QakBotマルウェア

QakBotは、ここ12年の間に、最も致命的なトロイの木馬の1つとしてその名を轟かせるようになりました。個別の企業を狙ったハイペースかつ自動化された攻撃に使用されるQakBotは、企業のリソースを浪費し大量の財務データを盗む機能を備えています。このトロイの木馬は、しばしばEmotetキャンペーン中にダウンロードされ、デバイスを感染させて銀行口座情報を収集するために使われます。

QakBotは他のバンキング型トロイと同様に、ドロッパーを使用して企業のデバイスに自分自身をインストールします。次に、システム内で自己増殖し、マシンスピードで認証情報を収集します。サイバー犯罪者はこの情報を利用して、個人データを抽出したり、ランサムウェアやさらなる悪意あるペイロードをばらまいたりすることができます。

QakBotは、従来型のセキュリティツールによる検知がきわめて困難です。ワームに似た自動機能、実行を遅らせるウイルスドロッパーの使用、その他各種の難読化機能の組み合わせにより、大半の従来型ツールを迂回することができるため、初期段階で対処しなければ甚大な金銭的被害につながるおそれがあります。

Darktrace SOCチーム

ケンブリッジ、サンフランシスコ、およびシンガポールにあるDarktraceのSecurity Operations Center(SOC)チームは、Cyber AIによって特定された動きが速くステルス性の幅広い脅威(ランサムウェア、SaaSアカウント乗っ取り、データ流出など)に対処します。

これらの攻撃は、‘living off the land’(環境に寄生する)テクニックを用いることが多いため、正当なネットワークトラフィックとの区別が困難です。さらに、多くの脅威アクターは、標的企業の通常の勤務時間外に悪意のある活動を行うため、侵害が発見されるまでに影響がさらに大きくなる可能性があります。

Darktrace SOCチームは、Proactive Threat Notification(PTN)およびAsk the Expert(ATE)サービスを通じて、顧客の環境を年中無休で保護します。これらのサービスは自律的なAI検知と並行して、重大なセキュリティイベントの渦中にある顧客に、人間による監視とサポートを提供します。

バンキング型トロイQakBotを解き明かす

図1:バンキング型トロイQakBotによる攻撃のタイムライン。Darktraceのサービスによる対処を含む

EMEA(ヨーロッパ、中東、アフリカ)地域にある、約7,000台のデバイスを持つ企業において、Cyber AIはトロイの木馬の初期の兆候を検知しました。この会社はメールトラフィックを解析して受信トレイへの攻撃に対処するDarktrace Emailを導入していなかったので、ゲートウェイをすり抜けたフィッシングメールをあるユーザーが開くと、彼のデバイスは大量の疑わしいエンドポイントに接続し始めました。

これはコマンド&コントロール(C2)通信に似ていました。このアクティビティの性質はこのデバイスおよび環境にとっての通常と異なっていたため、スコアの高いモデル違反が複数トリガーされました。その1つは、確度の高い‘Suspicious SSL Activity’(疑わしいSSLアクティビティ)モデル違反であり、Proactive Threat Notificationサービスを通じて調査が促されました。

図2:感染したデバイスのCyber AI Analystインシデントタイムラインの例。コマンド&コントロールおよび偵察アクティビティを示しています。

Darktraceのエキスパートアナリストは、普段と異なる接続に対する警告をEnterprise Immune Systemから受け取り、異常な動作の調査に着手しました。そして、このデバイスがバンキング型トロイに感染している有力な兆候を示していると判断しました。アナリストはすばやく行動する必要がありました。トロイの木馬が即座に偵察を開始し、ネットワーク全体に広がる準備をしていたからです。

1時間以内に、アナリストはアクティビティの概要をまとめた短いレポートを作成し、顧客にPTNアラートとして送信しました。このレポートには、時間帯、デバイスのホスト名とIPアドレス、疑わしい外部ドメイン、および顧客がこのアラートをDarktrace UIで見るための参照先など、モデル違反とCyber AI Analystインシデントの主な技術的情報が記載されていました。

図3:Darktrace脅威トレイの視覚的な表示。QakBot攻撃では、4つのEnhanced Monitoringモデル違反がトリガーされ、これらはPTNサービスを通じて調査および警告されました。これらの検知はすべてスコアが高く、明らかに侵害を示していました。

アラートを受信した顧客はさらなる調査を開始し、感染したデバイスを速やかにシャットダウンしました。攻撃は2時間以内に封じ込められました。

Ask the Expert

最初の修復作業後、同社はAsk the Expertを通じてDarktraceに連絡し、これがQakBotへの感染であったことを確認するとともに、侵害の範囲を調査するための追加の支援を受けました。

アナリストチームは、その後6時間にわたって調査を継続的にサポートし、発生源はフィッシングメールであった可能性が高く、環境内で他に侵害されたデバイスはないという結論を出しました。アナリストは、観測されたIoC(Indicator of Compromise)のリストを提供し、さらなる監視のため顧客と協力してリストの内容をDarktraceのウォッチ対象ドメインリストに追加しました。また、顧客はこのリストを利用して、ファイアウォールでIoCをブロックすることもできました。

同社は感染を封じ込め、その後ネットワークデバイスからさらなる疑わしい動作が観測されることはありませんでした。

人間とAI

このケースは、Darktraceのサービスが絶え間ない支援を顧客に日々提供していることをよく示している例です。Darktraceの高度な機械学習技術に加え、Darktrace SOCチームは、あらゆる規模のセキュリティチームに対応する追加的なサポートのレイヤーとして機能します。Proactive Threat Notificationsは新たな脅威の発生を見張るための追加の目となり、Ask the Expertは顧客がDarktraceのアナリストから直接、調査のサポートを得られる仕組みを提供します。

バンキング型トロイを早期に検知したおかげで、この企業は深刻な感染やランサムウェア攻撃に発達する前に、脅威に対処することができました。QakBotは、今日の脅威環境に存在するさまざまな高速自己増殖型マルウェアの1つに過ぎません。このような自動攻撃は、最も迅速な人間の防御担当者のペースをも絶えず上回るため、人間のチームを補ってデジタルシステムをリアルタイムで保護するためのAIや自動システムが切実に求められています。

もし、この環境でDarktrace RESPONDがこの環境下で有効にされていれば、疑わしい外部接続は最初の検知時にブロックされ、攻撃は数秒で阻止されていたはずです。実際に、顧客はこのインシデント後にAntigena Networkの導入を決定し、今では自律遮断技術によりすべての新たなサイバー脅威に対して24時間、週7日対処しています。

IoCs:

nerotimethod[.]com193[.]29[.]58[.]17345[.]32[.]211[.]20754[.]36[.]108[.]120144[.]139[.]166[.]1875[.]67[.]192[.]125 149[.]28[.]101[.]9037[.]211[.]90[.]17568[.]131[.]107[.]37162[.]222[.]226[.]194mywebscrap[.]com

Darktraceによるモデル検知:

  • Compromise / SSL or HTTP Beacon
  • Compromise / Suspicious SSL Activity
  • Device / Multiple C2 Model Breaches
  • Device / Lateral Movement and C2 Activity
  • Device / Multiple Lateral Movement Model Breaches
  • Device / Large Number of Model Breaches
  • Compromise / Suspicious Beaconing Behaviour
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Suspicious Self-Signed SSL
  • Anomalous Connection / Rare External SSL Self-Signed
  • Device / Reverse DNS Sweep
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Active Directory Reconnaissance
  • Device / Network Scan - Low Anomaly Score
  • Anomalous Connection / SMB Enumeration

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Brianna Leddy
Director of Analysis

Based in San Francisco, Brianna is Director of Analysis at Darktrace. She joined the analyst team in 2016 and has since advised a wide range of enterprise customers on advanced threat hunting and leveraging Self-Learning AI for detection and response. Brianna works closely with the Darktrace SOC team to proactively alert customers to emerging threats and investigate unusual behavior in enterprise environments. Brianna holds a Bachelor’s degree in Chemical Engineering from Carnegie Mellon University.

Book a 1-1 meeting with one of our experts
この記事を共有

More in this series

該当する項目はありません。

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について

Blog

Inside the SOC

Sliver C2: How Darktrace Provided a Sliver of Hope in the Face of an Emerging C2 Framework

Default blog imageDefault blog image
17
Apr 2024

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

結論

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

付録

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

侵害指標(IoC)一覧

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

参考文献

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

続きを読む
著者について
Natalia Sánchez Rocafort
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.