Blog

Inside the SOC

Outlawの秘密のクリプトマイニングをAIがどのように発見したか

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Oct 2021
10
Oct 2021
For years, the notorious crypto-jacking group Outlaw have been adapting their botnet to make it past traditional security measures. This blog explains how Darktrace was able to see through their disguises and unpack their methods.

サイバー犯罪者達にとって、悪名は逆説的な望みです。一部の者にとって、自慢する権利はサイバー犯罪の動機ともなりますが、検知を免れたいと願っているものにとって悪名が広まることは分別ある目標とは言えないでしょう。このことは、たとえば大きな利益を生んだEmotetボットネットの背後にいた脅威アクター達が、2021年の初めに8か国の法執行機関による協調した摘発により彼らのオペレーションが壊滅させられたときに学んだことでした。それでもなお、サイバーセキュリティメディアに繰り返し名前が登場し、常に検知を免れているグループもあります。たとえばOutlawなどもその一つです。

Outlawの襲撃計画の立て方

2018年以来活動していながら、ハッキンググループOutlawについてはほとんど知られていません。Outlawは中国国内および国際的に数多くのボットネットおよびクリプトジャッキング攻撃を仕掛けてきました。このグループは、繰り返し使われたファイル名や暗号通貨Moneroのマイニングを行う傾向などからさまざまな特徴で知られていますが、その成功の理由は究極的には攻撃と攻撃の間の数か月の休眠期間に適応し進化することにあると言えます。

Outlawの攻撃の特徴は絶え間ない変更や更新であり、比較的静かに活動することにより、見慣れない脅威に弱いセキュリティシステムを標的としています。

2020年、Outlawはボットネットツールセットを更新し、他の犯罪者のクリプトジャッキングソフトウェアを見つけて潰すことにより、感染したデバイスからの彼らに対する支払いを最大化しようとしたことが注目を集めました。サイバー犯罪者の間に敬意が存在しないことには驚きませんが、この更新にはOutlawのマルウェアが従来のセキュリティ防御をすり抜けられるようさらに厄介な変更が含まれていました。

大きな盗みを働くたびに姿を変え、静かに身を隠しておくことにより、Outlawという名前にどれほどの悪評がついても、過去の攻撃データに依存する従来のセキュリティシステムが彼らに対して備えられないようにしてきたのです。しかし組織がこれらのシステムのルールベースのアプローチを超え、デジタルエステートの保護に自己学習型AIを取り入れるようになると、Outlawのようなグループに対しても形勢を逆転できるようになります。

このブログでは、2021年の夏、世界の遠く離れた2つの場所にあった2台の感染済みゾンビデバイスがOutlawのボットネットによって作動し、Darktraceがこうしたアクティビティをこれらのデバイスが事前に感染していたにも関わらず検知できた事例を紹介します。

賞金稼ぎ:攻撃の最初の兆候

図1:攻撃のタイムライン

7月、中央アメリカの通信会社のネットワークに1台の新しいデバイスが追加されると、Darktraceは2つの疑わしいエンドポイントに対して一連の定期的な接続が行われていることを検知し、ビーコニング動作であることを特定しました。同じ動作がこれとは別に、しかしほとんど同時に、アジア太平洋地域の金融企業で発生していることがわかりました。この会社はDarktraceを初めて導入したところでした。Darktraceの自己学習型AIが既に感染していたデバイスを特定することができたのは、それぞれのデジタルエステート内の同じような動作のデバイスをピアグループとしてクラスタ化することにより、デバイスのさまざまな振る舞いからこれら2台が通常と異なる動きをしていることを認識したためです。

これらのゾンビデバイスがOutlawにより作動させられた最初の兆候は暗号通貨マイニングの開始でした。地理的に遠く離れていたにも関わらずこれらのデバイスは同じクリプトアカウントに接続していることがわかり、無差別かつ急激に拡大するボットネットの性質が再確認されました。

Outlaw は過去にはその活動を中国にあるデバイスに限定しておりこれは警戒していることの現れと考えられていましたが、最近のこのような活動は自信の高まりを示しています。

ボットネットのリクルートプロセス

これに続く443番ポート(HTTPSアクティビティと関係のあることが多いポート)を使ったInternet Relay Chat (IRC) 接続は、以前2020年にOutlawボットネットが示していたアクティビティの特徴と完全に一致していました。IRCはボットマスターとゾンビデバイスの間のコミュニケーションによく使われるツールですが、443番ポートを使うことにより攻撃者は通常のインターネットトラフィックに紛れ込もうとしたのです。

この通信の直後、これらのデバイスはシェルスクリプトをダウンロードしました。DarktraceのCyber AI Analystはネットワーク内を通過したこのこのシェルスクリプトを傍受し再現することによりその機能のすべてを明らかにしました。興味深いことに、このスクリプトはARMアーキテクチャを使用しているデバイスを識別してボットネットから除外していました。ARMアーキテクチャはその優れた低消費電力性により、主にポータブルなモバイルデバイスで使用されています。

この選別は、Outlawの主たる目的が悪意あるクリプトマイニングであることの証左です。クリプトマイニング性能が低い小型なデバイスを避けることにより、このシェルスクリプトは最も処理性能の高い、したがって利益の大きいデバイス、たとえばデスクトップコンピューターやサーバーにボットネットを集中させています。こうすることにより、クリプトマイニングのスケールにあまり大きな影響を与えることなくボットネット全体の残すIndicators of Compromise (IOCs) を縮小することができます。

問題の2台のデバイスはARMアーキテクチャを使用しておらず、数分後にはdota3[.]tar[.]gzという名前のファイルを含む二次ペイロードを受信しました。これは前世代のOutlawボットネット‘dota2’(人気のビデオゲームの名前をとったもの)の新シリーズともいうべきものです。このファイルの受信に伴って、これらのデバイスは世界に広がるOutlawボットネットの最新バージョンでアップデートされたようでした。

このダウンロードには、攻撃者による ‘Living off the Land’ (環境に寄生する)戦術の使用が一役買っています。これらのデバイスに既に存在している普通のLinuxプログラム(それぞれ‘curl’と‘Wget’)だけを使うことにより、Outlawは従来のセキュリティシステムによりアクティビティをマークされることを回避したのです。たとえばWgetは、表面上はWebサーバーからコンテンツを取得するのに使用する信頼できるプログラムであり、OutlawのTTP(戦術、テクニック、手順)の一部として過去に使用された記録がありません。

アプローチを進化させ適応させることにより、Outlawはルールベースのセキュリティを常に出し抜くことができたのです。しかしDarktraceの自己学習型AIはこれに対応し、このWget接続を即座に疑わしいものと識別してさらなる調査を指示しました。

図2:Cyber AI Analystは7月15日午前のWgetの使用を疑わしいものとして識別し、関係があるかもしれない7月14日の午前に発生したHTTP接続の調査を開始しました。このようにして、攻撃の全体像を構築します。

ボットネットの解明

その後36時間において、DarktraceはSSHと関連することの多いポート、たとえば22番、2222番、2022番などから未知の外部IPアドレスに対する600万回を超えるTCPおよびSSH接続を検知しました。

これらの接続によってボットネットが実際に何をしようとしていたのかは想像するしかありません。これらのデバイスはDDoS(Distributed Denial of Service)や、狙ったSSHアカウントに対するブルートフォース攻撃の一部として使用されていたか、あるいは単にボットネットをさらに拡大するために新しい標的を探し感染させるタスクを担っていたのかもしれません。 Darktraceはどちらのデバイスもこのイベント以前にはSSH接続を行っていなかったことを認識しており、Antigenaがアクティブモードで運用されていれば、これらを中断させる方策を実行していたことでしょう。

図3:2021年7月14日にボットがアクティブ化される前および後のデバイスの動作。モデル違反の大幅な増加は確認済みの「生活パターン」からの明らかな逸脱を示しています。

幸いなことに、どちらのデバイスの所有者もDarktraceの検知アラートに迅速に反応し、それぞれのデジタルエステートに対する深刻な被害が及ぶのを防ぐことができました。これらのデバイスが引き続きボットネットの影響下にあれば、その悪影響ははるかに深刻なものとなっていたはずです。

SSHプロトコルの使用により、Outlawは多数のアクティビティに転回していくことができたはずで、これらのデバイスのネットワークをさらに侵害し、それぞれの組織にデータ損失あるいは金銭的な損失を与えていたはずです。

保安官を呼ぶ:自己学習型AI

ルールベースのセキュリティソリューションは昔の西部劇の「お尋ね者」ポスターのようなもので、先週街にやってきた犯罪者を探す一方で、今日丘の上に現れた犯罪者に対する備えはありません。悪意あるハッカーや犯罪者達が攻撃のたびに新しい見た目を取り入れ新しいテクニックを活用する状況では、脅威に対する新しい対処の方法が必要です。

Darktraceは‘Outlaw’という名前も、彼らの攻撃の変化の歴史も、彼らを阻止する上で知る必要がありません。根本的な自己学習型アプローチにより、Darktraceは周囲の環境をゼロから学習し、サイバー脅威の兆候かもしれないかすかな変化を識別します。さらに、独自の自律遮断技術により、人間の介入を必要とすることなく、的を絞ったアクションを実行してマシンスピードで脅威を無害化することも可能です。

この脅威事例についての考察はDarktraceアナリストJun Qi Wong が協力しました。

Cyber AI Analyst が複雑な攻撃を自動調査する仕組みについて知る

技術的詳細

Darktraceによるモデル検知

  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining [Enhanced Monitoring]
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Device / Increased External Connectivity
  • Unusual Activity / Unusual External Activity
  • Compromise / SSH Beacon
  • Compromise / High Frequency SSH Beacon
  • Anomalous Connection / Multiple Connections to New External TCP Port

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Oakley Cox
Analyst Technical Director, APAC

Oakley is a technical expert with 5 years’ experience as a Cyber Analyst. After leading a team of Cyber Analysts at the Cambridge headquarters, he relocated to New Zealand and now oversees the defense of critical infrastructure and industrial control systems across the APAC region. His research into cyber-physical security has been published by Cyber Security journals and CISA. Oakley is GIAC certified in Response and Industrial Defense (GRID), and has a Doctorate (PhD) from the University of Oxford.

Book a 1-1 meeting with one of our experts
この記事を共有

More in this series

該当する項目はありません。

Blog

Inside the SOC

A Thorn in Attackers’ Sides: How Darktrace Uncovered a CACTUS Ransomware Infection

Default blog imageDefault blog image
24
Apr 2024

What is CACTUS Ransomware?

In May 2023, Kroll Cyber Threat Intelligence Analysts identified CACTUS as a new ransomware strain that had been actively targeting large commercial organizations since March 2023 [1]. CACTUS ransomware gets its name from the filename of the ransom note, “cAcTuS.readme.txt”. Encrypted files are appended with the extension “.cts”, followed by a number which varies between attacks, e.g. “.cts1” and “.cts2”.

As the cyber threat landscape adapts to ever-present fast-paced technological change, ransomware affiliates are employing progressively sophisticated techniques to enter networks, evade detection and achieve their nefarious goals.

How does CACTUS Ransomware work?

In the case of CACTUS, threat actors have been seen gaining initial network access by exploiting Virtual Private Network (VPN) services. Once inside the network, they may conduct internal scanning using tools like SoftPerfect Network Scanner, and PowerShell commands to enumerate endpoints, identify user accounts, and ping remote endpoints. Persistence is maintained by the deployment of various remote access methods, including legitimate remote access tools like Splashtop, AnyDesk, and SuperOps RMM in order to evade detection, along with malicious tools like Cobalt Strike and Chisel. Such tools, as well as custom scripts like TotalExec, have been used to disable security software to distribute the ransomware binary. CACTUS ransomware is unique in that it adopts a double-extortion tactic, stealing data from target networks and then encrypting it on compromised systems [2].

At the end of November 2023, cybersecurity firm Arctic Wolf reported instances of CACTUS attacks exploiting vulnerabilities on the Windows version of the business analytics platform Qlik, specifically CVE-2023-41266, CVE-2023-41265, and CVE-2023-48365, to gain initial access to target networks [3]. The vulnerability tracked as CVE-2023-41266 can be exploited to generate anonymous sessions and perform HTTP requests to unauthorized endpoints, whilst CVE-2023-41265 does not require authentication and can be leveraged to elevate privileges and execute HTTP requests on the backend server that hosts the application [2].

Darktrace’s Coverage of CACTUS Ransomware

In November 2023, Darktrace observed malicious actors leveraging the aforementioned method of exploiting Qlik to gain access to the network of a customer in the US, more than a week before the vulnerability was reported by external researchers.

Here, Qlik vulnerabilities were successfully exploited, and a malicious executable (.exe) was detonated on the network, which was followed by network scanning and failed Kerberos login attempts. The attack culminated in the encryption of numerous files with extensions such as “.cts1”, and SMB writes of the ransom note “cAcTuS.readme.txt” to multiple internal devices, all of which was promptly identified by Darktrace DETECT™.

While traditional rules and signature-based detection tools may struggle to identify the malicious use of a legitimate business platform like Qlik, Darktrace’s Self-Learning AI was able to confidently identify anomalous use of the tool in a CACTUS ransomware attack by examining the rarity of the offending device’s surrounding activity and comparing it to the learned behavior of the device and its peers.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled in autonomous response mode during their encounter with CACTUS ransomware meaning that attackers were able to successfully escalate their attack to the point of ransomware detonation and file encryption. Had RESPOND been configured to autonomously act on any unusual activity, Darktrace could have prevented the attack from progressing, stopping the download of any harmful files, or the encryption of legitimate ones.

Cactus Ransomware Attack Overview

Holiday periods have increasingly become one of the favoured times for malicious actors to launch their attacks, as they can take advantage of the festive downtime of organizations and their security teams, and the typically more relaxed mindset of employees during this period [4].

Following this trend, in late November 2023, Darktrace began detecting anomalous connections on the network of a customer in the US, which presented multiple indicators of compromise (IoCs) and tactics, techniques and procedures (TTPs) associated with CACTUS ransomware. The threat actors in this case set their attack in motion by exploiting the Qlik vulnerabilities on one of the customer’s critical servers.

Darktrace observed the server device making beaconing connections to the endpoint “zohoservice[.]net” (IP address: 45.61.147.176) over the course of three days. This endpoint is known to host a malicious payload, namely a .zip file containing the command line connection tool PuttyLink [5].

Darktrace’s Cyber AI Analyst was able to autonomously identify over 1,000 beaconing connections taking place on the customer’s network and group them together, in this case joining the dots in an ongoing ransomware attack. AI Analyst recognized that these repeated connections to highly suspicious locations were indicative of malicious command-and-control (C2) activity.

Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.
Figure 1: Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.

The infected device was then observed downloading the file “putty.zip” over a HTTP connection using a PowerShell user agent. Despite being labelled as a .zip file, Darktrace’s detection capabilities were able to identify this as a masqueraded PuttyLink executable file. This activity resulted in multiple Darktrace DETECT models being triggered. These models are designed to look for suspicious file downloads from endpoints not usually visited by devices on the network, and files whose types are masqueraded, as well as the anomalous use of PowerShell. This behavior resembled previously observed activity with regards to the exploitation of Qlik Sense as an intrusion technique prior to the deployment of CACTUS ransomware [5].

The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.
Figure 2: The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.

Following the download of the masqueraded file, Darktrace observed the initial infected device engaging in unusual network scanning activity over the SMB, RDP and LDAP protocols. During this activity, the credential, “service_qlik” was observed, further indicating that Qlik was exploited by threat actors attempting to evade detection. Connections to other internal devices were made as part of this scanning activity as the attackers attempted to move laterally across the network.

Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.
Figure 3: Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.

The compromised server was then seen initiating multiple sessions over the RDP protocol to another device on the customer’s network, namely an internal DNS server. External researchers had previously observed this technique in CACTUS ransomware attacks where an RDP tunnel was established via Plink [5].

A few days later, on November 24, Darktrace identified over 20,000 failed Kerberos authentication attempts for the username “service_qlik” being made to the internal DNS server, clearly representing a brute-force login attack. There is currently a lack of open-source intelligence (OSINT) material definitively listing Kerberos login failures as part of a CACTUS ransomware attack that exploits the Qlik vulnerabilities. This highlights Darktrace’s ability to identify ongoing threats amongst unusual network activity without relying on existing threat intelligence, emphasizing its advantage over traditional security detection tools.

Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.
Figure 4: Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.

In the month following these failed Kerberos login attempts, between November 26 and December 22, Darktrace observed multiple internal devices encrypting files within the customer’s environment with the extensions “.cts1” and “.cts7”. Devices were also seen writing ransom notes with the file name “cAcTuS.readme.txt” to two additional internal devices, as well as files likely associated with Qlik, such as “QlikSense.pdf”. This activity detected by Darktrace confirmed the presence of a CACTUS ransomware infection that was spreading across the customer’s network.

The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
Figure 5: The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.
Figure 6: CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.

Following this initial encryption activity, two affected devices were observed attempting to remove evidence of this activity by deleting the encrypted files.

Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.
Figure 7: Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.

結論

In the face of this CACTUS ransomware attack, Darktrace’s anomaly-based approach to threat detection enabled it to quickly identify multiple stages of the cyber kill chain occurring in the customer’s environment. These stages ranged from ‘initial access’ by exploiting Qlik vulnerabilities, which Darktrace was able to detect before the method had been reported by external researchers, to ‘actions on objectives’ by encrypting files. Darktrace’s Self-Learning AI was also able to detect a previously unreported stage of the attack: multiple Kerberos brute force login attempts.

If Darktrace’s autonomous response capability, RESPOND, had been active and enabled in autonomous response mode at the time of this attack, it would have been able to take swift mitigative action to shut down such suspicious activity as soon as it was identified by DETECT, effectively containing the ransomware attack at the earliest possible stage.

Learning a network’s ‘normal’ to identify deviations from established patterns of behaviour enables Darktrace’s identify a potential compromise, even one that uses common and often legitimately used administrative tools. This allows Darktrace to stay one step ahead of the increasingly sophisticated TTPs used by ransomware actors.

Credit to Tiana Kelly, Cyber Analyst & Analyst Team Lead, Anna Gilbertson, Cyber Analyst

付録

参考文献

[1] https://www.kroll.com/en/insights/publications/cyber/cactus-ransomware-prickly-new-variant-evades-detection

[2] https://www.bleepingcomputer.com/news/security/cactus-ransomware-exploiting-qlik-sense-flaws-to-breach-networks/

[3] https://explore.avertium.com/resource/new-ransomware-strains-cactus-and-3am

[4] https://www.soitron.com/cyber-attackers-abuse-holidays/

[5] https://arcticwolf.com/resources/blog/qlik-sense-exploited-in-cactus-ransomware-campaign/

Darktrace DETECT Models

Compromise / Agent Beacon (Long Period)

Anomalous Connection / PowerShell to Rare External

Device / New PowerShell User Agent

Device / Suspicious SMB Scanning Activity

Anomalous File / EXE from Rare External Location

Anomalous Connection / Unusual Internal Remote Desktop

User / Kerberos Password Brute Force

Compromise / Ransomware / Ransom or Offensive Words Written to SMB

Unusual Activity / Anomalous SMB Delete Volume

Anomalous Connection / Multiple Connections to New External TCP Port

Compromise / Slow Beaconing Activity To External Rare  

Compromise / SSL Beaconing to Rare Destination  

Anomalous Server Activity / Rare External from Server  

Compliance / Remote Management Tool On Server

Compromise / Agent Beacon (Long Period)  

Compromise / Suspicious File and C2  

Device / Internet Facing Device with High Priority Alert  

Device / Large Number of Model Breaches  

Anomalous File / Masqueraded File Transfer

Anomalous File / Internet facing System File Download  

Anomalous Server Activity / Outgoing from Server

Device / Initial Breach Chain Compromise  

Compromise / Agent Beacon (Medium Period)  

Compromise / Agent Beacon (Long Period)  

IoC一覧

IoC - Type - Description

zohoservice[.]net: 45.61.147[.]176 - Domain name: IP Address - Hosting payload over HTTP

Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17763.2183 - User agent -PowerShell user agent

.cts1 - File extension - Malicious appendage

.cts7- File extension - Malicious appendage

cAcTuS.readme.txt - Filename -Ransom note

putty.zip – Filename - Initial payload: ZIP containing PuTTY Link

MITRE ATT&CK マッピング

Tactic - Technique  - SubTechnique

Web Protocols: COMMAND AND CONTROL - T1071 -T1071.001

Powershell: EXECUTION - T1059 - T1059.001

Exploitation of Remote Services: LATERAL MOVEMENT - T1210 – N/A

Vulnerability Scanning: RECONAISSANCE     - T1595 - T1595.002

Network Service Scanning: DISCOVERY - T1046 - N/A

Malware: RESOURCE DEVELOPMENT - T1588 - T1588.001

Drive-by Compromise: INITIAL ACCESS - T1189 - N/A

Remote Desktop Protocol: LATERAL MOVEMENT – 1021 -T1021.001

Brute Force: CREDENTIAL ACCESS        T – 1110 - N/A

Data Encrypted for Impact: IMPACT - T1486 - N/A

Data Destruction: IMPACT - T1485 - N/A

File Deletion: DEFENSE EVASION - T1070 - T1070.004

続きを読む
著者について
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.