Blog

該当する項目はありません。

DarktraceのAIがメタモーフィック型マルウェアを検知する仕組み

DarktraceのAIがメタモーフィック型マルウェアを検知する仕組みDefault blog imageDefault blog image
31
Jul 2017
31
Jul 2017

Some of the most insidious threats that Darktrace finds use self-modifying technology to hide their presence on the network. These attacks can dynamically change their threat signatures, automatically extract data, and spread without a human controller.

Recently, we discovered anomalous activity on the network of a major US university. After investigation, we found that the anomaly was the ‘Smoke Malware Loader’ which employs numerous techniques to evade internal security. Most notably, the malware generates fake traffic to hide its presence.

Darktrace observed the initial infection when three anomalous executables were transferred over plain text. The malware did not match any known threat signatures, allowing it to bypass the network’s perimeter controls.

C1ulyq1wLrMBs6LG00 on Thu Sep 8, 13:19:01
Co2eAJ2GifEkWut700 on Thu Sep 8, 12:09:52
CdcZeu200UOsuf5u00 on Wed Sep 14, 16:38:44

The connections originated from a suspicious external domain that the company had never communicated with before:

lago666[.]com (91.243.193.149)

Both the anomalous download and the beaconing activity represented major deviations from the unique ‘pattern of life’ learned by the Enterprise Immune System.

Although the payload circumvented the network’s perimeter security, the company also had an alternate security system monitoring network flow. This tool raised an alert when the download occurred, but it was deemed a ‘false positive’ because the malware proceeded to install new, previously unknown versions of the executable to the Windows registry.

After the self-modifying modules were uploaded to the company device, a large number of HTTP POST requests were sent against /smk/log.php to the following domains:

lago666[.]com
lago666[.]xyz
lago666[.]pw
lago666[.]top
lago666[.]site
lago666[.]bid
www.lago666[.]website
lago666[.]online
www.lago666[.]space
lago666[.]website
lago666[.]space
www.lago666[.]online
lago666[.]trade
lago666[.]webcam
lago666[.]tech
lago666[.]host
lago666[.]press

The malware attempted to transfer data to these external destinations, but to hide its tracks, the remote machine replied with a fake 404 error code. These connections were deemed highly anomalous by Darktrace’s AI algorithms.

Since the payload was designed to be compatible with the password grabber module2 – which is often deployed side-by-side with Smoke Malware Loader – the data attempting to leave the network likely contained user credentials and passwords.

In conjunction with the initial transfer, another anomalous file was then delivered to a different device. This activity indicated that the threat actor was likely attempting to move laterally across the network:

hxxp://cdn.che[.]moe/izgmcx.exe (connection UID: CGH6uV3G5tdKSNY800) to 10.1.105.117 on Mon Sep 12 at 08:02:03.

Darktrace detected each anomaly in real time as the situation developed. By using AI algorithms to continuously learn normal behavior, Darktrace was able to monitor the malware’s changing threat signature.

Traditional security tools – no matter how advanced – are incapable of detecting such sophisticated threats. Legacy controls rely on rules and signatures, and these threats are specifically designed to bypass rules and signatures.

Darktrace’s real-time threat detection allowed the university’s security team to quarantine the infected devices before the malware could burrow deeper into the network, and before the attacker could use the passwords to further compromise the network. Darktrace then assisted the security team as they remediated the situation and changed their security protocols and passwords.

More in this series:

該当する項目はありません。

Like this and want more?

Receive the latest blog in your inbox
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Justin Fier
SVP, Red Team Operations

Justin is one of the US’s leading cyber intelligence experts, and holds the position of SVP, Red Team Operations at Darktrace. His insights on cyber security and artificial intelligence have been widely reported in leading media outlets, including the Wall Street Journal, CNN, The Washington Post, and VICELAND. With over 10 years’ experience in cyber defense, Justin has supported various elements in the US intelligence community, holding mission-critical security roles with Lockheed Martin, Northrop Grumman Mission Systems and Abraxas. Justin is also a highly-skilled technical specialist, and works with Darktrace’s strategic global customers on threat analysis, defensive cyber operations, protecting IoT, and machine learning.

share this article
USE CASES
該当する項目はありません。
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage
該当する項目はありません。
This Article
DarktraceのAIがメタモーフィック型マルウェアを検知する仕組み
Share
Twitter logoLinkedIn logo

Related Articles

該当する項目はありません。

Good news for your business.
Bad news for the bad guys.

無償トライアルを開始

無償トライアルを開始

柔軟な導入
仮想的にインストールすることも、ハードウェアでインストールすることも可能です。
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
For more information, please see our Privacy Notice.
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。

デモを見る

柔軟な導入
仮想的にインストールすることも、ハードウェアでインストールすることも可能です。
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。

Check out this article by Darktrace: How Darktrace’s AI detects metamorphic malware