Blog

Eメール

クラウド

Inside the SOC

1通のEメールが物流企業を悪夢に陥れる

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Aug 2021
11
Aug 2021
SaaSの利用拡大やグローバルな供給体制によって複雑化したサプライチェーンは、サイバーセキュリティが直面する最も緊急な懸念事項です。このブログでは、Darktrace が信頼できる第三者からのフィッシングメールを検知し、悪循環に陥った事例を検証しています。

組織は、その最も脆弱な部分がある限り、その他の部分が安全であるとは言えません。多くの場合、その弱点は、組織が依存するさまざまなクラウドアプリケーションに存在します。APT28を含むいくつかの有名なグループは、一般的に使用されているパスワードを悪用して、世界中の企業にブルートフォースで侵入することが知られています。これらの「スプレー」キャンペーンは、Microsoft Office 365のアカウントを標的とすることが多く、SaaSの利用が増加するにつれて、さらに頻度が高くなると思われます。

このブログでは、1通のフィッシングメールが、ゲートウェイやその他の従来のツールの目を潜り抜け、最終的にヨーロッパの物流会社で大規模な侵害を引き起こしたことを分析しています。

ロジスティクスの悪夢

物流オペレーターは、あらゆる産業分野で重要な役割を担っています。売り手から顧客までの商品やサービスの流通を管理することで、効率的なサプライチェーンを実現したり、ボトルネックになったりするのです。物流業者は、多くの組織と関わりを持ち、納期厳守のプレッシャーにさらされ、機密データを扱うことが多いため、必然的にサイバー犯罪者の格好のターゲットになっています。

攻撃者にとっては単純な方程式です。厳重に守られた20の組織に侵入するために労力を費やすのか、それともたった1つの組織を攻撃し、そこから20以上の組織すべてにアクセスするのか?今年、Darktrace が観測したサイバー脅威の大半は後者で、保護が手薄な第三者を悪用して、さまざまな企業への足がかりを得ようとするものでした。

特にワクチンの供給は、何度も攻撃にさらされています。昨年秋には、ドイツの生物医学組織に脅威者が侵入し、フィッシングキャンペーンを展開して認証情報を取得し、COVID-19コールドチェーンに関わる複数の組織を危険にさらしました。

ランサムウェアと並んで、フィッシング攻撃は業界が直面する最も緊急な懸念事項の1つです。

連鎖を断ち切る

ある中堅物流企業で、あるユーザーが乗っ取られた第三者から1通のフィッシングメールを受け取りました。そのメールは、メール送信履歴のある信頼できる送信元から送られてきたため、ゲートウェイを簡単に通過してしまいました。

フィッシングメールが受信箱に届くと、ユーザーは悪意のあるリンクをクリックし、偽のログインページに誘導され、そこで認証情報を漏えいさせられてしまうのです。

その4日後、攻撃者はいつもと違う場所からアカウントにログインし、機密情報を含むファイルの読み取りを開始したのです。

翌日、Darktraceは、別の異常な場所からの新しいEメールルールを検知しました。その直後、このアカウントから大量の送信メールが送信され、そのすべてに不審なリンクが含まれていました。

図1:攻撃のタイムライン - 総滞在時間は5日間

供給と破壊

一度組織のデジタルエコシステムの中に入ってしまえば、簡単に動き回り、より多くのアカウントを危険にさらすことができます。ほとんどのセキュリティツールや従業員は、信頼できるユーザーから送信された社内メール、特にそのユーザーが権限を持つ上級者である場合は、それを疑うことはありません。

そのため、この一連の送信メールの後、他の会社のアカウントで異常な場所からの異常なアクティビティが正規に確認されたのです。これらのユーザーは、同僚が送ったと思われるメールに騙され、自分の情報を渡してしまっていたのです。

さらに機密性の高い顧客ファイルが読み取られ、その後、乗っ取られたアカウントから送信されるEメールが急増しました。

今回は、社内ではなく、社外の連絡先にメールを送信していました。この連絡先は、当時、物流会社と取引をしていたため、そのアカウントからのメールを受け取ることに慣れていたようです。

合計で450通以上のフィッシングメールが、さまざまな第三者に送られました。このフィッシングメールは、さまざまな第三者に送られ、その多くが認証情報を流出させられ、また同じことが繰り返されました。

図2: Cyber AI Analyst は、侵入したユーザーの不審な行動を調査し、異常なログイン場所や実行されたアクションを含む詳細なサマリーを提供します

危機一髪:サードパーティ攻撃の脅威

この攻撃のきっかけとなった最初のフィッシングメールの送信元は、お客様が知っている正規の第三者であり、おそらく同じようなことが起こったのだと思われます。

このようなベンダーメールの不正使用は、何度も繰り返されることで悪循環に陥り、Eメールセキュリティソリューションでは発見が困難で、風評被害や経済的なダメージにつながる可能性があります。さらに問題を複雑にするのは、既知の送信者からの疑わしいEメールに対して対処しても、それが正当なものであると判明した場合、ビジネスに大きな支障をきたす可能性があることです。

このため、セキュリティは「良い」「悪い」という二元的なアプローチを超えて、あらゆるEメールのやり取りを取り巻くコンテキストをより総合的に理解する必要があります。

Darktrace は、同じドメインの送信者からの他のメールと比較することで、複数の異常を正確に検知しました。セキュリティチームに優先度の高いアラートを送信しましたが、検知モードのみだったため、受信箱にメールが届くのを防ぐことはできませんでした。

図3:Darktraceによる最初のフィッシングメールの自動要約では、メールの疑わしい点の概要を知ることができます。

この攻撃では、Piktochartと呼ばれるサードパーティツールが使用されており、インフォグラフィック、チャート、フォームなど様々なタイプのファイルを作成するように設計されています。Piktochartは、いくつかの正当な用途がある一方で、悪用される可能性もあります。そのため、ゲートウェイはPiktochartのリンクを正規のものと悪意のあるものとを区別するのに苦労しています。このケースでは、ゲートウェイは解析のために最初のリンクを書き直しましたが、悪意のあるリンクとは認識しませんでした。

これに対し、Darktrace/Emailは、その送信者の特徴から外れていること、またリンク自体が疑わしいことから、簡単に不審なメールであることを特定しました。アクティブモードでは、AIはリンクをロックし、メールを迷惑フォルダに移動させ、攻撃の最初のステップを効果的に防ぎ、それ以上の侵害を回避したことでしょう。

図4:Piktochartはこの時点まで展開上ほとんど見られず、ドメインは100%稀でした。Darktraceは、このサードパーティツールの使用の異常性を容易に検知することができました

バタフライ効果

ほとんどのサイバー攻撃は、たった1つの侵入口から始まります。フィッシングメール1つで、サプライチェーン全体を崩壊させることができるのです。サイバー攻撃の94%は受信トレイから始まり、サプライヤーやベンダーはMicrosoft TeamsやGoogle Cloudなど複数のSaaSプラットフォームで常にコミュニケーションを取っているため、メールセキュリティツールは信頼できる第三者の異常な行動を検知する能力が必要なのです。

特にリモートワークの増加に伴い、世界中の企業でSaaSの利用が急増し、多くの企業が柔軟な労働力を実現するためにクラウドやSaaSを利用することを余儀なくされています。明らかな利点がある一方で、これらの追加により攻撃対象が拡大し、従来のセキュリティや人的セキュリティチームの限界も伸びています。

グローバルなオペレーションで中間的な役割を果たすことが多い物流企業に関して言えば、クレデンシャルハーヴェスティングは、顧客だけでなく、顧客のメール連絡先にいる誰に対しても深刻な影響を与え、多数の人々や企業にとって大きな違反につながる可能性があるのです。

図5: Darktraceのユーザーインターフェースから、侵害された企業アカウントから送信された2つの送信メールのスパイクを確認できます

この脅威事例についての考察はDarktraceアナリストEmma Foulgerが協力しました。

物流事業者が直面する脅威の詳細をもっと知る

Darktraceによるモデル検知:

  • SaaS / Compliance / New Email Rule
  • SaaS / Unusual Login and New Email Rule
  • Antigena Email models included
  • Unusual / Unusual Login Location and New Unknown Link
  • Link / Account Hijack Link
  • Link / Outlook Hijack
  • Internal Compromise / Recipient Surge from Unusual Login Location (outbound emails)
  • Internal Compromise / Recipient Surge with Suspicious Content (outbound emails)

NEWSLETTER

Like this and want more?

最新の業界ニュースやインサイトをお届けします。
You can unsubscribe at any time. Privacy Policy
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Mariana Pereira
VP, Cyber Innovation

Mariana is the VP of Cyber Innovation at Darktrace, and works closely with the development, analyst, and marketing teams to advise technical and non-technical audiences on how best to augment cyber resilience, and how to implement AI technology as a means of defense. She speaks regularly at international events, with a specialism in presenting on sophisticated, AI-powered email attacks. She holds an MBA from the University of Chicago, and speaks several languages including French, Italian, and Portuguese.

この記事を共有

More in this series

該当する項目はありません。

Blog

Inside the SOC

PurpleFox in a Henhouse: How Darktrace Hunted Down a Persistent and Dynamic Rootkit

Default blog imageDefault blog image
27
Nov 2023

Versatile Malware: PurpleFox

As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.

One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.

The Evolution of PurpleFox

The Original Strain

First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.  

Subsequent Variants

Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.

The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.

Darktrace detection of PurpleFox

In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.

Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.

While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.

攻撃の概要

Figure 1: Timeline of PurpleFox malware kill chain.

Initial Scanning over SMB

On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.

This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

Figure 2: Cyber AI Analyst technical details summarizing the initial scanning activity seen with the internal network scan over port 445.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

Figure 3: The affected device’s Model Breach Event Log showing the initial scanning activity observed by Darktrace DETECT and the corresponding suggested RESPOND action.

特権昇格

The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.

Exploitation

Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.

Figure 4: PurpleFox remote service control activity captured by a Darktrace DETECT model breach.
Figure 5: The infected device’s Model Breach Event Log showing the anomalous service control activity being picked up by DETECT.

There are a few MSIEXEC flags to note:

  • /i : installs or configures a product
  • /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required

Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Figure 6: The infected device’s Model Breach Event Log showing the outbound activity corresponding to PurpleFox’s wormlike spread. This was caught by DETECT and the corresponding suggested RESPOND action.

Installation

On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.

The first connection was made with the URI ‘/test.png’.  It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.

The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.

Figure 7: Packet Capture from an affected customer device showing the initial HTTP requests to the payload server.
Figure 8: Packet Capture showing the HTTP requests to download the payloads.

The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Figure 9: PCAP from the affected customer device showing the Windows Installer user-agent associated with the .PNG file download.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.

By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.  

Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.

In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.

Figure 10: Cyber AI Analyst technical details summarizing the downloads of the PurpleFox payload.
Figure 11 (a): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.
Figure 11 (b): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.

If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.

結論

The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indictors of compromise (IoCs), necessitating a more sophisticated approach to threat detection.  

Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.  

By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.

Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore

付録

Darktraceによるモデル検知

  • Device / Increased External Connectivity
  • Device / Large Number of Connections to New Endpoints
  • Device / SMB Session Brute Force (Admin)
  • Compliance / External Windows Communications
  • Anomalous Connection / New or Uncommon Service Control
  • Compromise / Unusual SVCCTL Activity
  • Compromise / Rare Domain Pointing to Internal IP
  • Anomalous File / Masqueraded File Transfer

RESPOND Models

  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block

IoC一覧

IoC - Type - Description

/C558B828.Png - URI - URI for Purple Fox Rootkit [4]

5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)

190.4.210[.]242 - IP - Purple Fox C2 Servers

218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)

180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)

103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

MITRE ATT&CK マッピング

Tactic - Technique

Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002

Resource Development - Obtain Capabilities: Malware T1588.001

Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001

Initial Access - Drive-by Compromise T1189

Defense Evasion - Masquerading T1036

Credential Access - Brute Force T1110

Discovery - Network Service Discovery T1046

Command and Control - Proxy: External Proxy T1090.002

参考文献

  1. https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
  2. https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
  3. https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
  4. https://www.foregenix.com/blog/an-overview-on-purple-fox
  5. https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
続きを読む
著者について
Piramol Krishnan
Cyber Security Analyst

$70 Million in Cyber Security Funding for Electric Cooperatives & Utilities

Default blog imageDefault blog image
22
Nov 2023

What is the Bipartisan Infrastructure Deal?

The Bipartisan Infrastructure Law passed by congress in 2021 aimed to upgrade power and infrastructure to deliver clean, reliable energy across the US to achieve zero-emissions. To date, the largest investment in clean energy, the deal will fund new programs to support the development and deployment of clean energy technology.

Why is it relevant to electric municipalities?

Section 40124 of the Bipartisan Infrastructure Law allocates $250 million over a 5-year period to create the Rural and Municipal Utility Cybersecurity (RMUC) Program to help electric cooperative, municipal, and small investor-owned utilities protect against, detect, respond to, and recover from cybersecurity threats.1 This act illuminates the value behind a full life-cycle approach to cyber security. Thus, finding a cyber security solution that can provide all aspects of security in one integrated platform would enhance the overall security posture and ease many of the challenges that arise with adopting multiple point solutions.

On November 16, 2023 the Office of Cybersecurity, Energy Security, and Emergency Response (CESER) released the Advanced Cybersecurity Technology (ACT) for electric utilities offering a $70 million funding opportunity that aims to enhance the cybersecurity posture of electric cooperative, municipal, and small investor-owned utilities.

Funding Details

10 projects will be funded with application submissions due November 29, 2023, 5:00 pm ET with $200,000 each in cash prizes in the following areas:

  1. Direct support for eligible utilities to make investments in cybersecurity technologies, tools, training, and improvements in utility processes and procedures;
  2. Funding to strengthen the peer-to-peer and not-for-profit cybersecurity technical assistance ecosystem currently serving eligible electric utilities; and
  3. Increasing access to cybersecurity technical assistance and training for eligible utilities with limited cybersecurity resources. 2

To submit for this award visit: https://www.herox.com/ACT1Prize

How can electric municipalities utilize the funding?

While the adoption of hybrid working patterns increase cloud and SaaS usage, the number of industrial IoT devices also continues to rise. The result is decrease in visibility for security teams and new entry points for attackers. Particularly for energy and utility organizations.

Electric cooperatives seeking to enhance their cyber security posture can aim to invest in cyber security tools that provide the following:

Compliance support: Consider finding an OT security solution that maps out how its solutions and features help your organization comply with relevant compliance mandates such as NIST, ISA, FERC, TSA, HIPAA, CIS Controls, and more.

Anomaly based detection: Siloed security solutions also fail to detect attacks that span
the entire organization. Anomaly-based detection enhances an organization’s cyber security posture by proactively defending against potential attacks and maintaining a comprehensive view of their attack surface.

Integration capabilities: Implementation of several point solutions that complete individual tasks runs the risk of increasing workloads for operators and creates additional challenges with compliance, budgeting, and technical support. Look for cyber security tools that integrate with your existing technologies.

Passive and active asset tracking: Active Identification offers accurate enumeration, real time updates, vulnerability assessment, asset validation while Passive Identification eliminates the risk of operational disruption, minimizes risk, does not generate additional network traffic. It would be ideal to find a security solution that can do both.

Can secure both IT and OT in unison: Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, a mature security posture for critical infrastructure would include a single solution for both IT and OT. Separate solutions for IT and OT present challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. These independent solutions also significantly increase operator workload and materially diminish risk mitigation efforts.

Darktrace/OT for Electric Cooperatives and Utilities

For smaller teams with just one or two dedicated employees, Darktrace’s Cyber AI Analyst and Investigation features allow end users to spend less time in the platform as it compiles critical incidents into comprehensive actionable event reports. AI Analyst brings all the information into a centralized view with incident reporting in natural language summaries and can be generated for compliance reports specific to regulatory requirements.  

For larger teams, Darktrace alerts can be forwarded to 3rd party platforms such as a SIEM, where security team decision making is augmented. Additionally, executive reports and autonomous response reduce the alert fatigue generally associated with legacy tools. Most importantly, Darktrace’s unique understanding of normal allows security teams to detect zero-days and signatureless attacks regardless of the size of the organization and how alerts are consumed.

Key Benefits of Darktrace/OT

Figure 1: Darktrace/OT stops threats moving from IT to OT by providing a unified view across both systems

参考文献

1. https://www.whitehouse.gov/briefing-room/statements-releases/2021/11/06/fact-sheet-the-bipartisan-infrastructure-deal/

2. https://www.energy.gov/ceser/rural-and-municipal-utility-advanced-cybersecurity-grant-and-technical-assistance-rmuc

続きを読む
著者について
Jeff Cornelius
EVP, Cyber-Physical Security

Good news for your business.
Bad news for the bad guys.

無償トライアルを開始

無償トライアルを開始

柔軟な導入
Cloud-based deployment.
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
フォームを送信する際に何らかの問題が発生しました。

デモを見る

柔軟な導入
仮想的にインストールすることも、ハードウェアでインストールすることも可能です。
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。