Blog

Inside the SOC

ソーシャルエンジニアリング:既知の送信者と未知の送信者の両方から悪意あるEメール活動を検知

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Apr 2023
10
Apr 2023
This blog post dissects two phishing attempts from known and unknown correspondents: a payroll diversion scam from unknown sender, and a malicious Microsoft 365 credential-stealing Box link from a known domain pretending to be a scanned PDF document sent for review.

近年、ソーシャルエンジニアリングはサイバー脅威の中で広く普及しており、今日のソーシャルメディアのほぼ普遍的な使用により、攻撃者はより効果的に被害者を調査し、ターゲットにすることができます。ソーシャルエンジニアリングは、ユーザーを操作して、ログイン情報やクレジットカード情報などの機密情報を開示させるなどの行為を行うものです。また、ユーザーアカウントの漏えいにつながることもあり、組織のデジタル資産に大きな混乱をもたらすこともあります。 

人々が個人的な理由だけでなく、ビジネス目的でもソーシャルメディアプラットフォームを利用するようになると、攻撃者はソーシャルエンジニアリング攻撃で悪用できる情報を得るようになります。例えば、脅威アクターは、既知の個人または正規のサービスになりすまし、ユーザーの確立した信頼を利用しようとすることがあります。既知の連絡先を模倣することで、拒否リストに依存する従来のセキュリティツールでは攻撃を検知することが困難になるため、ソーシャルエンジニアリングの手法としては非常に有効です。

2022年10月、Darktrace は脅威アクターが既知の連絡先になりすまして顧客のデバイスを侵害しようとした2つの別々の悪質なEメールキャンペーンを特定し対応しました。Eメールシステムのすべてのユーザーの通常の行動を学習するため、Darktrace はこれらの脅威を即座に検知し、自律的に軽減することができ、顧客ネットワークへの重大な混乱を防ぐことができました。

元従業員になりすました給与流用詐欺未遂 

カナダのエネルギーセクターのお客様が2022年10月にDarktrace をトライアル利用していた際、Darktrace/Email™は、組織内の従業員から送信されたと思われる疑わしいEメールを特定しました。Eメールは人事部(HR)のシニアディレクター宛に送信され、件名は "Change in payroll Direct Deposit" でした。このEメールは、従業員の銀行口座情報の変更を要求していました。しかし、Darktrace は送信者がランダムな文字を含むフリーメールのアドレスを使用しており、アルゴリズムで生成された可能性があることを認識しました。この事件は導入トライアル中に発生したため、Darktrace/Emailは対策を講じるように設定されていませんでした。そうでなければ、受信トレイにメールが届くのを防げたはずです。しかし、このケースでは、他のすべてのセキュリティツールを回避して、当該Eメールが送信されてしまったのです。

送信者不明のEメールでしたが、送信者と思われる社員は7日前に退職しており、会社のEメールアカウントにアクセスできなくなっていたため、人事部長はこのEメールが正当なものである可能性があると考えていました。しかし、Darktrace/Emailダッシュボードで確認した後、お客様は不審に思い、そのリクエストが正当なものかどうかを確認するために元社員に直接連絡しました。その結果、そのようなEメールは送っていないことが確認され、疑惑は晴れました。

顧客がさらに調査を進めたところ、その元従業員は、さまざまなソーシャルメディア上で退社について発言していたことが判明しました。このため、脅威アクターは元従業員になりすまし、組織を欺くための貴重な情報を得ることができたのです。 

組織の人事部門を狙い、給与を流用しようとするこのような試みは、サイバー犯罪者の一般的な手口であり、Darktrace/Emailによって顧客全体で特定されることが多いのです。Darktrace/Email は、こうしたなりすましの試みに関連する指標を即座に特定し、顧客のセキュリティチームの注意を喚起することができるのです。 

フィッシングリンクを共有するために正規のファイル共有サービスを使用 

2022年10月7日、シンガポールの建設業界の顧客が、この組織にとって既知の法律事務所になりすまそうとするフィッシングキャンペーンの標的にされました。約200名の従業員が、件名が "Accepted:評価契約書" というEメールを受信したのです。 

図1:異常指標、履歴、関連付け、検証を示すメッセージ保持のUIビューの例

その4日前、Darktraceは法律事務所に関連する別のEメールアドレスと顧客の従業員との間の通信を観察しました。Darktrace/Emailは、この通信相手が顧客にEメールを送信したのは初めてだと指摘しました。 

図2:送信者のドメインがデジタル環境内でどの程度知られているかを示す指標

このEメールには、ファイル共有サービスへの非常に珍しいリンク(hxxps://ssvilvensstokes[.]app[.]box[.]com/notes)が、「PREVIEW OR PRINT COPY OF DOCUMENT HERE」というテキストの後ろに隠れていました。Darktrace がこのイベントをさらに調べたところ、2022年の10月にOSINTセキュリティツールを使って約30個の同様のURLが疑わしいものとして特定されていたため、このフィッシングキャンペーンの標的が当該顧客だけでないことが判明しました。

Figure 3: Preview of the phishing email’s body.
図4:フィッシングメールに含まれるリンクに対するDarktraceの評価

追加のOSINT作業により、このリンクは、"Valuation Agreement "という名前のPDFファイルをホストしていると思われるウェブサイトへ誘導することが判明しました。その後、受信者は、ファイルを表示するために、「OPEN OR ACCESS DOCUMENT HERE」というテキストに隠された別のリンク(hulking-citrine-krypton [.]glitch[.]me)をたどるように促されます。その後、ユーザーはMicrosoft 365の認証情報を入力するよう促されます。 

図5:フィッシングリンクをクリックした際に表示されるページ(サンドボックス環境で見た場合)
図6:受信者が2つ目のリンクをクリックし、hulking-citrine-krypton[.]glitch[.]me にアクセスした際に表示されるページの例 

このページには、"This document has been scanned for viruses by Norton Antivirus Security." というテキストが含まれていました。これは、脅威アクターが、ユーザーの信頼を獲得し、成功の可能性を高めるために、確立されたセキュリティベンダーなどの有名ブランドになりすまし、ソーシャルエンジニアリングの技術を採用したもう1つの例です。

法律事務所の実在の職員がアカウントを乗っ取られ、それを悪用した悪意ある行為者がサプライチェーン攻撃の一環としてこのようなフィッシングメールを一斉送信していた可能性が高いです。このような場合、悪意のある行為者は、ターゲットが普段の会話から逸脱することを疑わないよう、既知の連絡先への信頼を頼りにします。 

Darktrace は、一見すると既知の通信相手から送信されたEメールであるにもかかわらず、これらのEメールに複数の異常があることを即座に検知することができました。検知されたアクティビティは、予期せぬリンクや視覚的に目立つリンクに関連するモデルブリーチを自動的に誘発しました。その結果、Darktrace/Emailは、リンクをロックして、ユーザーがクリックできないように対応しました。

Darktrace はその後、この送信者から社内の他の受信者を狙ったメールが確認され、フィッシングキャンペーンを示唆するメール送信の急増に伴うモデルブレーキングが引き起こされました。これに対し、Darktrace/Emailは自律的に行動し、これらのEメールを迷惑メールとしてファイリングしました。お客様の環境でより多くのメールが検知されるにつれ、送信者の異常スコアは上昇し、最終的にDarktrace は160通以上の悪質なEメールを阻止し、受信者をアカウント侵害の可能性から保護することができました。           

このフィッシングキャンペーンの期間中、以下のDarktrace/Email モデルが侵害されました:

  • Unusual/Sender Surge 
  • Unusual/Undisclosed Recipients 
  • Antigena Anomaly 
  • Association/Unlikely Recipient Association 
  • Link/Low Link Association 
  • Link/Visually Prominent Link 
  • Link/Visually Prominent Link Unexpected For Sender 
  • Unusual/New Sender Wide Distribution
  • Unusual/Undisclosed Recipients + New Address Known Domain

結論

攻撃者は、ソーシャルエンジニアリングを利用して、ユーザーを操作し、送金、認証情報の開示、悪意のあるリンクのクリックなどをさせることができるため、現在のEメールサイバーセキュリティを脅かす主要な脅威の多くに関与しているのです。 

上記の脅威の実例は、2022年12月にChatGPTがリリースされ、言語生成AIが主流となる前に起こったものです。現在では、悪意のあるアクターが洗練されたソーシャルエンジニアリングメールを生成することがさらに容易になっています。ソーシャルメディアの投稿を入力として使用することで、生成AIによって書かれたソーシャルエンジニアリングメールは、高度にターゲット化され、大規模に生成することができます。また、文法やスペルの間違いなど、ユーザーが注意すべき点を回避し、ペイロードを隠したり、完全に見過ごしたりすることも可能です。

ソーシャルエンジニアリングのリスクを軽減するために、ソーシャルメディアポリシーを導入し、従業員がオンラインに投稿する内容に注意するよう促すとともに、資金移動の要求が正当なものかどうかを確認する手順を定めることが推奨されます。

しかし、これらのポリシーはそれだけでは十分ではありません。Darktrace/Emailは、既知の通信相手から送信されたEメールでも、未知の送信者から送信されたEメールでも、疑わしいEメールの特徴を識別することができます。自己学習型AIを搭載しているため、どんななりすましよりも組織のユーザーをよく理解しています。このように、Darktrace/Emailは、Eメール内の異常を検知し、悪意のあるコンポーネントを機械的な速度で無効化することで、従業員が被害に遭う前に、攻撃を初期段階で阻止することができます。 

付録

侵害指標(IoC)一覧

ドメイン:

hxxps://ssvilvensstokes[.]app[.]box[.]com/notes/*?s=* - 1st external link (seen in email)

hxxps://hulking-citrine-krypton[.]glitch[.]me/flk.html - 2nd external link, masked behind “OPEN OR ACCESS DOCUMENT HERE”

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Isabelle Cheong
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
この記事を共有
USE CASES
該当する項目はありません。
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage

More in this series

該当する項目はありません。

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について

Blog

Inside the SOC

Sliver C2: How Darktrace Provided a Sliver of Hope in the Face of an Emerging C2 Framework

Default blog imageDefault blog image
17
Apr 2024

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

結論

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

付録

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

侵害指標(IoC)一覧

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

参考文献

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

続きを読む
著者について
Natalia Sánchez Rocafort
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.