Blog

Thought Leadership

Ransomware

サイバーセキュリティの未来:混乱の最大化を狙うランサムウェアグループ

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Feb 2022
06
Feb 2022
This second prediction in our Future of Cyber Security series asserts that 2022 may become one of ransomware’s most profitable years yet. Marcus Fowler explains new ransomware attacker tradecraft and what organizations need to do to keep up.

世界を襲ったCOVID-19パンデミックと並行して、ランサムウェアパンデミックも拡大しています。Darktraceの研究者は、米国内の組織に対するランサムウェア攻撃が2021年には2020年の3倍に増え、英国内では2倍に増えたことを確認しています。

この危機に際し、30か国が協力し、ランサムウェアに対する取り組みについて議論し、暗号通貨規制、セキュリティレジリエンス、攻撃の阻止、国際的なサイバー外交などについて検討することになりました。こうした画期的な施策や法執行機関の取り組みがあってもなお、ランサムウェアは引き続き最も警戒すべき脅威であり、なくなることはないと言えるでしょう。

ランサムウェアの浸透とともにサイバー攻撃のテクニックは2022年も引き続き進化

ランサムウェアギャングの標的の選定方法、攻撃の実行方法はますます巧妙化しています。多くの組織は、バックアップができていれば業務をすぐにオンラインに戻すことができるため、ランサムウェアはそれほど深刻な問題とはならないはずと考えています。しかし近年の攻撃は単なる暗号化やデータ抜き出しにとどまらず、企業のオペレーションの中断を最大化することに重点を置き、バックアップ自体を暗号化や削除のターゲットとすることもあります。2022年には、ランサムウェアギャングがクラウドサービスプロバイダーや、バックアップおよびアーカイブサービスプロバイダーを狙うことも考えられます。

重要インフラを担う組織や企業は、攻撃発生後どれだけ迅速にオペレーションを復旧できるか、そして身代金の支払いや高価なシステム修復などにおいて、サイバー保険会社にどれだけ頼ることができるか、およびそのための費用について検討を続けることになるでしょう。

1月初め、マイクロソフト社の研究者があるマルウェアの証拠を発見しましたが、これは複数のウクライナの組織を標的としたもので、一見ランサムウェアのようでしたが実際にはこれらはワイパーでした。マルウェアが身代金要求文を表示し、標的のデバイスの電源が落とされるとワイパーを実行するのです。他の非国家アクターがこの手法を取り入れれば、この進化はランサムウェアを超えた脅威となり、こうしたタイプの攻撃に持ちこたえ生き残ることができない組織も出てくるでしょう。

高度なランサムウェアギャングは彼らの綿密な標的選定により、これまでの大規模で有名な組織を狙った「大物狙い」だけではなく、中小規模組織を直接狙った攻撃にリソースを使っていくと思われます。自動化とサプライチェーン攻撃の活用によるスケーラビリティ向上により、ランサムウェアギャングは彼らのオペレーションを拡大する余裕が出てきます。大規模な組織はよりまとまった予算や人材を持っており、ランサムウェア対策に優先的にリソースを当てることができますが、小規模なビジネスでは対策ははるかに難しくなるでしょう。

ランサムウェア組織が標的を拡大しているだけではなく、攻撃を実行することのできるサイバー攻撃者グループの数も増えています。Ransomware-as-a-Service (RaaS)の台頭により、スキルの低い脅威アクターも高度なマルウェアを入手することができ、攻撃者の参入障壁は下がっています。RaaSの犯罪エコシステムは拡大し、標的を見つけて攻撃してからマルウェアをインストールするような、より低レベルの脅威アクターも含まれるようになりました。脅威アクター達はますますボットを使用して、標的のシステムに足掛かりをつかむための最初の攻撃を自動化するようになっています。

またサイバー犯罪者達のプロフェッショナル度もさまざまであり、年季の入った経験者(国家の支援を受けたサイバー攻撃組織の経験がある、あるいは現在関わっている)から、ほとんど経験のない「スクリプト小僧」までが含まれています。この幅広さが意味することは、レベルの低いアクターが高度なツールをテストもせずむやみに使用する可能性が大きくなっているということなのです。

戻ってくるランサムウェアグループ

ランサムウェアグループはしぶといです。政府の圧力によりランサムウェアグループを解散させあるいは彼らの刑事責任を追及しても、彼らは名前を変え、またひょっこりと出現します。たとえば、Colonial Pipeline社への攻撃の背後にいたと FBI により確認されたグループであるDarkSideは、攻撃の1週間後活動を停止しました。それからほどなく、BlackMatterが現れましたが、これは同じサイバー犯罪グループが名前を変えたものだと広く信じられています。

図1:米国のマーケティング会社を標的としたBlackMatterランサムウェア攻撃の各段階をDarktraceが分析

今年初め、ロシアのセキュリティ機関が悪名高い REvil ランサムウェアギャングの数人のメンバーを逮捕し、そのオペレーションを無力化しました。これは主要なグループに対する大きなステップではありましたが、サイバー犯罪者グループに対するロシアの政策の長期的変化に反映されることはなさそうです。これらの逮捕が REvil の終焉を意味しないことはほぼ確実でしょう。

5つのランサムウェアグループがデータと「ベストプラクティス」の交換をするためにカルテルを形成しました。これらのグループには、 Wizard Spider(RyukおよびContiランサムウェアに関連)、Twisted Spider(Mazeを開発しEgregorを使用)、Viking Spider(Ragnarの背後にいるグループ)、そしてLockBitが含まれています。

政府の圧力によりランサムウェアグループを解散させ、あるいはランサムウェアギャングの刑事責任を追及しても、これらのグループは名前を変え、さらに高度なテクニックや能力を身につけて再び出現するでしょう。

静的な「強化版」境界防御は答えではありません – 動的な自己防衛型システムが答えです

組織がサイバー攻撃に耐えうるシステムを構築するには、セキュリティリーダーはビジネスの継続性を最大化するための防御について再考し、とりわけ最初の侵入の先にあるビジネスの継続性を最大限に高めるための防御を考え、より重要なことを行う必要があります。サイバー境界の防御を中心としたファイアウォールのようなセキュリティ防御では、進化する脅威から身を守るには十分ではありません。

真に動的な防御は実現可能です。組織はビジネスの「正常」な状態を積極的に維持し、ファイル暗号化やデータ抜き出しなど悪意ある異常な動作の最も早い兆候が出た段階で攻撃を阻止する必要があります。セキュリティテクノロジーは、学習し、細かな意思決定を行い、状況に見合った対処を行うことにより、データ抜き出しや暗号化が発生する前の十分に早い段階で攻撃を検知し阻止しなければなりません。

攻撃者達は、彼らがすり抜けようとしている脅威インテリジェンスに依存した防御ツールについて非常によく知っており、多くの組織が採用している従来のサイロ化したアプローチの限界について理解しています。攻撃者達は短時間に重要な情報を見つけ出し、ファイルを抜き取り、データを暗号化します。防御担当者が攻撃を検知し食い止めるための競争の条件は過酷化し対応可能な期間はますます短くなっています。

サイバーセキュリティはもはや人間の手に負える問題ではありません。組織はますます自動化されるランサムウェア攻撃から防御することができるAIベースの保護システムを取り入れる必要があります。動きの速いサイバー攻撃や、セキュリティチームがオフィスにいない時間を狙った脅威アクターが主流となった現在、通常のビジネスを中断させることなく的を絞ったアクションにより攻撃を封じ込めるにはAIテクノロジーが欠かせないものとなりました。

NEWSLETTER

Like this and want more?

最新の業界ニュースやインサイトをお届けします。
You can unsubscribe at any time. Privacy Policy
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Marcus Fowler
SVP, Strategic Engagements and Threats

As SVP of Strategic Engagements and Threats, Marcus works closely with senior security leaders across industries on cyber security strategy and business resilience, including across Darktrace’s Federal Division. Marcus focuses his research and analysis around emerging and next generation cyber threats, trends, and conflicts. Prior to joining Darktrace in 2019, Marcus spent 15 years at the Central Intelligence Agency developing global cyber operations and technical strategies. He has led cyber efforts with various US Intelligence Community elements and global partners. Prior to serving at the CIA, Marcus was an officer in the United States Marine Corps. Marcus has an engineering degree from the United States Naval Academy and a Masters’ Degree in International Security Studies from The Fletcher School. He also completed Harvard Business School’s Executive Education Advanced Management Program.

この記事を共有
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

Inside the SOC

PurpleFox in a Henhouse: How Darktrace Hunted Down a Persistent and Dynamic Rootkit

Default blog imageDefault blog image
27
Nov 2023

Versatile Malware: PurpleFox

As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.

One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.

The Evolution of PurpleFox

The Original Strain

First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.  

Subsequent Variants

Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.

The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.

Darktrace detection of PurpleFox

In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.

Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.

While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.

攻撃の概要

Figure 1: Timeline of PurpleFox malware kill chain.

Initial Scanning over SMB

On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.

This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

Figure 2: Cyber AI Analyst technical details summarizing the initial scanning activity seen with the internal network scan over port 445.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

Figure 3: The affected device’s Model Breach Event Log showing the initial scanning activity observed by Darktrace DETECT and the corresponding suggested RESPOND action.

特権昇格

The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.

Exploitation

Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.

Figure 4: PurpleFox remote service control activity captured by a Darktrace DETECT model breach.
Figure 5: The infected device’s Model Breach Event Log showing the anomalous service control activity being picked up by DETECT.

There are a few MSIEXEC flags to note:

  • /i : installs or configures a product
  • /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required

Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Figure 6: The infected device’s Model Breach Event Log showing the outbound activity corresponding to PurpleFox’s wormlike spread. This was caught by DETECT and the corresponding suggested RESPOND action.

Installation

On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.

The first connection was made with the URI ‘/test.png’.  It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.

The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.

Figure 7: Packet Capture from an affected customer device showing the initial HTTP requests to the payload server.
Figure 8: Packet Capture showing the HTTP requests to download the payloads.

The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Figure 9: PCAP from the affected customer device showing the Windows Installer user-agent associated with the .PNG file download.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.

By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.  

Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.

In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.

Figure 10: Cyber AI Analyst technical details summarizing the downloads of the PurpleFox payload.
Figure 11 (a): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.
Figure 11 (b): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.

If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.

結論

The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indictors of compromise (IoCs), necessitating a more sophisticated approach to threat detection.  

Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.  

By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.

Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore

付録

Darktraceによるモデル検知

  • Device / Increased External Connectivity
  • Device / Large Number of Connections to New Endpoints
  • Device / SMB Session Brute Force (Admin)
  • Compliance / External Windows Communications
  • Anomalous Connection / New or Uncommon Service Control
  • Compromise / Unusual SVCCTL Activity
  • Compromise / Rare Domain Pointing to Internal IP
  • Anomalous File / Masqueraded File Transfer

RESPOND Models

  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block

IoC一覧

IoC - Type - Description

/C558B828.Png - URI - URI for Purple Fox Rootkit [4]

5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)

190.4.210[.]242 - IP - Purple Fox C2 Servers

218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)

180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)

103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

MITRE ATT&CK マッピング

Tactic - Technique

Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002

Resource Development - Obtain Capabilities: Malware T1588.001

Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001

Initial Access - Drive-by Compromise T1189

Defense Evasion - Masquerading T1036

Credential Access - Brute Force T1110

Discovery - Network Service Discovery T1046

Command and Control - Proxy: External Proxy T1090.002

参考文献

  1. https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
  2. https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
  3. https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
  4. https://www.foregenix.com/blog/an-overview-on-purple-fox
  5. https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
続きを読む
著者について
Piramol Krishnan
Cyber Security Analyst

$70 Million in Cyber Security Funding for Electric Cooperatives & Utilities

Default blog imageDefault blog image
22
Nov 2023

What is the Bipartisan Infrastructure Deal?

The Bipartisan Infrastructure Law passed by congress in 2021 aimed to upgrade power and infrastructure to deliver clean, reliable energy across the US to achieve zero-emissions. To date, the largest investment in clean energy, the deal will fund new programs to support the development and deployment of clean energy technology.

Why is it relevant to electric municipalities?

Section 40124 of the Bipartisan Infrastructure Law allocates $250 million over a 5-year period to create the Rural and Municipal Utility Cybersecurity (RMUC) Program to help electric cooperative, municipal, and small investor-owned utilities protect against, detect, respond to, and recover from cybersecurity threats.1 This act illuminates the value behind a full life-cycle approach to cyber security. Thus, finding a cyber security solution that can provide all aspects of security in one integrated platform would enhance the overall security posture and ease many of the challenges that arise with adopting multiple point solutions.

On November 16, 2023 the Office of Cybersecurity, Energy Security, and Emergency Response (CESER) released the Advanced Cybersecurity Technology (ACT) for electric utilities offering a $70 million funding opportunity that aims to enhance the cybersecurity posture of electric cooperative, municipal, and small investor-owned utilities.

Funding Details

10 projects will be funded with application submissions due November 29, 2023, 5:00 pm ET with $200,000 each in cash prizes in the following areas:

  1. Direct support for eligible utilities to make investments in cybersecurity technologies, tools, training, and improvements in utility processes and procedures;
  2. Funding to strengthen the peer-to-peer and not-for-profit cybersecurity technical assistance ecosystem currently serving eligible electric utilities; and
  3. Increasing access to cybersecurity technical assistance and training for eligible utilities with limited cybersecurity resources. 2

To submit for this award visit: https://www.herox.com/ACT1Prize

How can electric municipalities utilize the funding?

While the adoption of hybrid working patterns increase cloud and SaaS usage, the number of industrial IoT devices also continues to rise. The result is decrease in visibility for security teams and new entry points for attackers. Particularly for energy and utility organizations.

Electric cooperatives seeking to enhance their cyber security posture can aim to invest in cyber security tools that provide the following:

Compliance support: Consider finding an OT security solution that maps out how its solutions and features help your organization comply with relevant compliance mandates such as NIST, ISA, FERC, TSA, HIPAA, CIS Controls, and more.

Anomaly based detection: Siloed security solutions also fail to detect attacks that span
the entire organization. Anomaly-based detection enhances an organization’s cyber security posture by proactively defending against potential attacks and maintaining a comprehensive view of their attack surface.

Integration capabilities: Implementation of several point solutions that complete individual tasks runs the risk of increasing workloads for operators and creates additional challenges with compliance, budgeting, and technical support. Look for cyber security tools that integrate with your existing technologies.

Passive and active asset tracking: Active Identification offers accurate enumeration, real time updates, vulnerability assessment, asset validation while Passive Identification eliminates the risk of operational disruption, minimizes risk, does not generate additional network traffic. It would be ideal to find a security solution that can do both.

Can secure both IT and OT in unison: Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, a mature security posture for critical infrastructure would include a single solution for both IT and OT. Separate solutions for IT and OT present challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. These independent solutions also significantly increase operator workload and materially diminish risk mitigation efforts.

Darktrace/OT for Electric Cooperatives and Utilities

For smaller teams with just one or two dedicated employees, Darktrace’s Cyber AI Analyst and Investigation features allow end users to spend less time in the platform as it compiles critical incidents into comprehensive actionable event reports. AI Analyst brings all the information into a centralized view with incident reporting in natural language summaries and can be generated for compliance reports specific to regulatory requirements.  

For larger teams, Darktrace alerts can be forwarded to 3rd party platforms such as a SIEM, where security team decision making is augmented. Additionally, executive reports and autonomous response reduce the alert fatigue generally associated with legacy tools. Most importantly, Darktrace’s unique understanding of normal allows security teams to detect zero-days and signatureless attacks regardless of the size of the organization and how alerts are consumed.

Key Benefits of Darktrace/OT

Figure 1: Darktrace/OT stops threats moving from IT to OT by providing a unified view across both systems

参考文献

1. https://www.whitehouse.gov/briefing-room/statements-releases/2021/11/06/fact-sheet-the-bipartisan-infrastructure-deal/

2. https://www.energy.gov/ceser/rural-and-municipal-utility-advanced-cybersecurity-grant-and-technical-assistance-rmuc

続きを読む
著者について
Jeff Cornelius
EVP, Cyber-Physical Security

Good news for your business.
Bad news for the bad guys.

無償トライアルを開始

無償トライアルを開始

柔軟な導入
Cloud-based deployment.
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
フォームを送信する際に何らかの問題が発生しました。

デモを見る

柔軟な導入
仮想的にインストールすることも、ハードウェアでインストールすることも可能です。
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。