Blog

Thought Leadership

Software Supply Chain Attacks Become a Given

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Jan 2022
12
Jan 2022
Explore key insights on supply chain cyber attacks. Learn why IT and communication sectors are targeted and how to protect your business. Learn more!

2020年には、金融サービスセクターが最も多くのサイバー攻撃を経験した業界でした。何年もの間、攻撃者がこれらの組織を狙ったのは、大きな利益が見込める標的と考えられていたからです。

しかし2021年には、金融サービスセクターはもはや最も狙われている業界ではありませんでした。その代わりに、通信プロバイダー、ソフトウェアメーカー、マネージドセキュリティサービスプロバイダーその他を含むITおよび通信セクターが最も多くのサイバー攻撃を受けるようになりました。

主要な標的が変化したことは、SolarWinds、Kaseya、GitLabへの攻撃を含め、2021年に発生した数多くの大規模なサプライチェーン攻撃を経験した業界のエキスパート達はよく知っています。脅威アクター達は、ソフトウェアおよび開発者インフラ、プラットフォーム、そしてプロバイダーを、ますます政府、企業、重要インフラへの侵入ベクトルとして見るようになっています。

Darktraceの調査では、DarktraceのAIにより2021年にはこのセクターに対する脅威を毎週およそ15万件、自律的に阻止したことを確認しています。これらの調査結果は、潜在的サイバー攻撃のいくつかの段階における「パンくず」を、攻撃アクターを特定したりこれらが深刻な危機にエスカレートする前に検知する、「早期兆候分析」により生成されたDarktraceのデータに基づいています。

この分析結果から、Darktraceは2022には脅威アクター達が悪意あるソフトウェアを、ソースコード、開発者のレポジトリ、オープンソースライブラリ、その他ソフトウェアサプライチェーン全体に渡って幅広く埋め込むであろうことを予想しています。私達はおそらく、ソフトウェアプラットフォームに対するさらなるサプライチェーン攻撃や、多くの公開された脆弱性に対する攻撃を目撃することになるでしょう。

変化が起こった理由

このセクターでの攻撃の増加はおそらく、より多くの企業が自社のデータの処理および保存に、信頼のおけるサードパーティサプライヤーを使うようになっていることがその理由でしょう。このサイバー攻撃ベクトルは、標的の最も貴重な資産に到達するために、関連組織を狙う攻撃者にとってこのシフトは、中小規模の企業が、自身が最終標的ではなくても攻撃に遭う可能性が高くなったことを意味します。

最近では、広範に使われているソフトウェアライブラリに組み込まれた‘Log4Shell’ 脆弱性により数十億台のデバイスが脅威にさらされ、Cybersecurity and Infrastructure Security Agencyがこれに対する正式なガイダンスを発表するきっかけとなりました。

不運なことに、これらのライブラリの多くはボランティアによる更新およびサポートしかなく、脆弱性や意図的な不正が入り込みやすい状況です。開発プロセスのずっと早い段階でアプリケーションにセキュリティを組み込むことの重要性を組織が理解し始めるなかで、DevSecOpsは2022年の重要な論点になるでしょう。オープンソースに依存することのリスクにより、開発チームがこれらの問題の中心に置かれることになります。

Eメールフィッシングは引き続き攻撃者の信頼する手法として残る

Darktraceの調査では、このように標的はシフトしているものの、ITセクターに対しても最も広範に使われている攻撃手法は引き続きフィッシングであることを確認しています。この業界の組織は2021年に毎月平均して600種類のEメールフィッシング攻撃に遭っています。これらの攻撃は巧妙さも増しており、そのほとんどは典型的な不正Eメールのような悪意あるリンクや添付ファイルを含まないものとなっています。

2022年には、攻撃者達はEメール攻撃をさらに進化させ、通信チェーンをより直接的に乗っ取ろうとするでしょう。2021年11月に発生したFBIのアカウント乗っ取りで見られたように、攻撃者が信頼されるサプライヤーアカウントを乗っ取り、本物で信頼のおけるアカウントからスピアフィッシングEメールを送る事案が発生するでしょう。

最先端のサイバー犯罪者達は普通のテキストを含む「クリーン」なEメールを使って、信頼される第三者になりすまし巧妙に作成したメッセージを送り、受信者が返信し機密情報を教えるよう仕向けます。

攻撃の増加に正面から立ち向かう

世界的なソフトウェアサプライチェーンがますます相互に繋がっていくなかで、政府、企業、重要インフラ関連組織はすべて、自社が契約しているソフトウェアおよび通信サプライヤーだけではなく、世界的ソフトウェアサプライチェーン内で発生したどのようなセキュリティ欠陥からも、侵害の危険にさらされているのです。

こうしたサイバー脅威に直面し、組織は自身のサイバーレジリエンスだけではなく、信頼するサプライヤーに対してサイバーセキュリティのベストプラクティス実施に責任を負わせることに重点を置かなくてはなりません。ソフトウェアサプライヤーに組み込まれた攻撃を見つけるのに魔法の解決策は存在しません。つまり組織にとっての本当の課題は、このリスクを受け入れつつ業務を続けることにあります。今年も、2021年同様に、これらの企業がサプライチェーンを通じた侵害を避けたいと望むのはますます非現実的になっています。むしろ、彼らは侵害が発生した後の攻撃者の存在を検知し、この悪意あるアクティビティを早い段階で食い止める能力を備えなければならないのです。

攻撃者が開発プロセスの最初の段階から自身を組み込むことができるならば、組織は攻撃者が侵入してしまった後でこれらを検知し阻止できなければなりません。この問題には、脅威アクターが脆弱性をエクスプロイトしていることを特定できるサイバー防御テクノロジーが必要となります。

これらの脅威に対し、セキュリティを開発プロセスのより早い段階で組み込む必要性、および攻撃をすばやく封じ込めてビジネスの中断を防ぐことの重要性が再確認されています。これらの攻撃は多段階で行われるものであり、そのあらゆる段階でAIを使って脅威を封じ込め修正することができます。

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Justin Fier
SVP, Red Team Operations

Justin is one of the US’s leading cyber intelligence experts, and holds the position of SVP, Red Team Operations at Darktrace. His insights on cyber security and artificial intelligence have been widely reported in leading media outlets, including the Wall Street Journal, CNN, The Washington Post, and VICELAND. With over 10 years’ experience in cyber defense, Justin has supported various elements in the US intelligence community, holding mission-critical security roles with Lockheed Martin, Northrop Grumman Mission Systems and Abraxas. Justin is also a highly-skilled technical specialist, and works with Darktrace’s strategic global customers on threat analysis, defensive cyber operations, protecting IoT, and machine learning.

Book a 1-1 meeting with one of our experts
この記事を共有
COre coverage

More in this series

該当する項目はありません。

Blog

Inside the SOC

Stemming the Citrix Bleed Vulnerability with Darktrace’s ActiveAI Platform

Default blog imageDefault blog image
28
May 2024

What is Citrix Bleed?

Since August 2023, cyber threat actors have been actively exploiting one of the most significant critical vulnerabilities disclosed in recent years: Citrix Bleed. Citrix Bleed, also known as CVE-2023-4966, remained undiscovered and even unpatched for several months, resulting in a wide range of security incidents across business and government sectors [1].

How does Citrix Bleed vulnerability work?

The vulnerability, which impacts the Citrix Netscaler Gateway and Netscaler ADC products, allows for outside parties to hijack legitimate user sessions, thereby bypassing password and multifactor authentication (MFA) requirements.

When used as a means of initial network access, the vulnerability has resulted in the exfiltration of sensitive data, as in the case of Xfinity, and even the deployment of ransomware variants including Lockbit [2]. Although Citrix has released a patch to address the vulnerability, slow patching procedures and the widespread use of these products has resulted in the continuing exploitation of Citrix Bleed into 2024 [3].

How Does Darktrace Handle Citrix Bleed?

Darktrace has demonstrated its proficiency in handling the exploitation of Citrix Bleed since it was disclosed back in 2023; its anomaly-based approach allows it to efficiently identify and inhibit post-exploitation activity as soon as it surfaces.  Rather than relying upon traditional rules and signatures, Darktrace’s Self-Learning AI enables it to understand the subtle deviations in a device’s behavior that would indicate an emerging compromise, thus allowing it to detect anomalous activity related to the exploitation of Citrix Bleed.

In late 2023, Darktrace identified an instance of Citrix Bleed exploitation on a customer network. As this customer had subscribed to the Proactive Threat Notification (PTN) service, the suspicious network activity surrounding the compromise was escalated to Darktrace’s Security Operation Center (SOC) for triage and investigation by Darktrace Analysts, who then alerted the customer’s security team to the incident.

Darktrace’s Coverage

Initial Access and Beaconing of Citrix Bleed

Darktrace’s initial detection of indicators of compromise (IoCs) associated with the exploitation of Citrix Bleed actually came a few days prior to the SOC alert, with unusual external connectivity observed from a critical server. The suspicious connection in question, a SSH connection to the rare external IP 168.100.9[.]137, lasted several hours and utilized the Windows PuTTY client. Darktrace also identified an additional suspicious IP, namely 45.134.26[.]2, attempting to contact the server. Both rare endpoints had been linked with the exploitation of the Citrix Bleed vulnerability by multiple open-source intelligence (OSINT) vendors [4] [5].

Darktrace model alert highlighting an affected device making an unusual SSH connection to 168.100.9[.]137 via port 22.
Figure 1: Darktrace model alert highlighting an affected device making an unusual SSH connection to 168.100.9[.]137 via port 22.

As Darktrace is designed to identify network-level anomalies, rather than monitor edge infrastructure, the initial exploitation via the typical HTTP buffer overflow associated with this vulnerability fell outside the scope of Darktrace’s visibility. However, the aforementioned suspicious connectivity likely constituted initial access and beaconing activity following the successful exploitation of Citrix Bleed.

Command and Control (C2) and Payload Download

Around the same time, Darktrace also detected other devices on the customer’s network conducting external connectivity to various endpoints associated with remote management and IT services, including Action1, ScreenConnect and Fixme IT. Additionally, Darktrace observed devices downloading suspicious executable files, including “tniwinagent.exe”, which is associated with the tool Total Network Inventory. While this tool is typically used for auditing and inventory management purposes, it could also be leveraged by attackers for the purpose of lateral movement.

防衛回避

In the days surrounding this compromise, Darktrace observed multiple devices engaging in potential defense evasion tactics using the ScreenConnect and Fixme IT services. Although ScreenConnect is a legitimate remote management tool, it has also been used by threat actors to carry out C2 communication [6]. ScreenConnect itself was the subject of a separate critical vulnerability which Darktrace investigated in early 2024. Meanwhile, CISA observed that domains associated with Fixme It (“fixme[.]it”) have been used by threat actors attempting to exploit the Citrix Bleed vulnerability [7].

Reconnaissance and Lateral Movement

A few days after the detection of the initial beaconing communication, Darktrace identified several devices on the customer’s network carrying out reconnaissance and lateral movement activity. This included SMB writes of “PSEXESVC.exe”, network scanning, DCE-RPC binds of numerous internal devices to IPC$ shares and the transfer of compromise-related tools. It was at this point that Darktrace’s Self-Learning AI deemed the activity to be likely indicative of an ongoing compromise and several Enhanced Monitoring models alerted, triggering the aforementioned PTNs and investigation by Darktrace’s SOC.

Darktrace observed a server on the network initiating a wide range of connections to more than 600 internal IPs across several critical ports, suggesting port scanning, as well as conducting unexpected DCE-RPC service control (svcctl) activity on multiple internal devices, amongst them domain controllers. Additionally, several binds to server service (srvsvc) and security account manager (samr) endpoints via IPC$ shares on destination devices were detected, indicating further reconnaissance activity. The querying of these endpoints was also observed through RPC commands to enumerate services running on the device, as well as Security Account Manager (SAM) accounts.  

Darktrace also identified devices performing SMB writes of the WinRAR data compression tool, in what likely represented preparation for the compression of data prior to data exfiltration. Further SMB file writes were observed around this time including PSEXESVC.exe, which was ultimately used by attackers to conduct remote code execution, and one device was observed making widespread failed NTLM authentication attempts on the network, indicating NTLM brute-forcing. Darktrace observed several devices using administrative credentials to carry out the above activity.

In addition to the transfer of tools and executables via SMB, Darktrace also identified numerous devices deleting files through SMB around this time. In one example, an MSI file associated with the patch management and remediation service, Action1, was deleted by an attacker. This legitimate security tool, if leveraged by attackers, could be used to uncover additional vulnerabilities on target networks.

A server on the customer’s network was also observed writing the file “m.exe” to multiple internal devices. OSINT investigation into the executable indicated that it could be a malicious tool used to prevent antivirus programs from launching or running on a network [8].

Impact and Data Exfiltration

Following the initial steps of the breach chain, Darktrace observed numerous devices on the customer’s network engaging in data exfiltration and impact events, resulting in additional PTN alerts and a SOC investigation into data egress. Specifically, two servers on the network proceeded to read and download large volumes of data via SMB from multiple internal devices over the course of a few hours. These hosts sent large outbound volumes of data to MEGA file storage sites using TLS/SSL over port 443. Darktrace also identified the use of additional file storage services during this exfiltration event, including 4sync, file[.]io, and easyupload[.]io. In total the threat actor exfiltrated over 8.5 GB of data from the customer’s network.

Darktrace Cyber AI Analyst investigation highlighting the details of a data exfiltration attempt.
Figure 2: Darktrace Cyber AI Analyst investigation highlighting the details of a data exfiltration attempt.

Finally, Darktrace detected a user account within the customer’s Software-as-a-Service (SaaS) environment conducting several suspicious Office365 and AzureAD actions from a rare IP for the network, including uncommon file reads, creations and the deletion of a large number of files.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled on the network and the post-exploitation activity was able to progress until the customer was made aware of the attack by Darktrace’s SOC team. Had RESPOND been active and configured in autonomous response mode at the time of the attack, it would have been able to promptly contain the post-exploitation activity by blocking external connections, shutting down any C2 activity and preventing the download of suspicious files, blocking incoming traffic, and enforcing a learned ‘pattern of life’ on offending devices.

結論

Given the widespread use of Netscaler Gateway and Netscaler ADC, Citrix Bleed remains an impactful and potentially disruptive vulnerability that will likely continue to affect organizations who fail to address affected assets. In this instance, Darktrace demonstrated its ability to track and inhibit malicious activity stemming from Citrix Bleed exploitation, enabling the customer to identify affected devices and enact their own remediation.

Darktrace’s anomaly-based approach to threat detection allows it to identify such post-exploitation activity resulting from the exploitation of a vulnerability, regardless of whether it is a known CVE or a zero-day threat. Unlike traditional security tools that rely on existing threat intelligence and rules and signatures, Darktrace’s ability to identify the subtle deviations in a compromised device’s behavior gives it a unique advantage when it comes to identifying emerging threats.

Credit to Vivek Rajan, Cyber Analyst, Adam Potter, Cyber Analyst

付録

Darktrace モデルカバレッジ

Device / Suspicious SMB Scanning Activity

Device / ICMP Address Scan

Device / Possible SMB/NTLM Reconnaissance

Device / Network Scan

Device / SMB Lateral Movement

Device / Possible SMB/NTLM Brute Force

Device / Suspicious Network Scan Activity

User / New Admin Credentials on Server

Anomalous File / Internal::Unusual Internal EXE File Transfer

Compliance / SMB Drive Write

Device / New or Unusual Remote Command Execution

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Rare WinRM Incoming

Anomalous Connection / Unusual Admin SMB Session

Device / Unauthorised Device

User / New Admin Credentials on Server

Anomalous Server Activity / Outgoing from Server

Device / Long Agent Connection to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Device / New or Uncommon SMB Named Pipe

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Compliance / Remote Management Tool On Server

Device / Anomalous RDP Followed By Multiple Model Breaches

Device / SMB Session Brute Force (Admin)

Device / New User Agent

Compromise / Large Number of Suspicious Failed Connections

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Enhanced Unusual External Data Transfer

Device / Increased External Connectivity

Unusual Activity / Unusual External Data to New Endpoints

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Compliance / Possible Unencrypted Password File On Server

Anomalous Connection / Suspicious Read Write Ratio and Rare External

Device / Reverse DNS Sweep]

Unusual Activity / Possible RPC Recon Activity

Anomalous File / Internal::Executable Uploaded to DC

Compliance / SMB Version 1 Usage

Darktrace AI Analyst Incidents

Scanning of Multiple Devices

Suspicious Remote Service Control Activity

SMB Writes of Suspicious Files to Multiple Devices

Possible SSL Command and Control to Multiple Devices

Extensive Suspicious DCE-RPC Activity

Suspicious DCE-RPC Activity

Internal Downloads and External Uploads

Unusual External Data Transfer

Unusual External Data Transfer to Multiple Related Endpoints

MITRE ATT&CK マッピング

Technique – Tactic – ID – Sub technique of

Network Scanning – Reconnaissance - T1595 - T1595.002

Valid Accounts – Defense Evasion, Persistence, Privilege Escalation, Initial Access – T1078 – N/A

Remote Access Software – Command and Control – T1219 – N/A

Lateral Tool Transfer – Lateral Movement – T1570 – N/A

Data Transfers – Exfiltration – T1567 – T1567.002

Compressed Data – Exfiltration – T1030 – N/A

NTLM Brute Force – Brute Force – T1110 - T1110.001

AntiVirus Deflection – T1553 - NA

Ingress Tool Transfer   - COMMAND AND CONTROL - T1105 - NA

Indicators of Compromise (IoCs)

204.155.149[.]37 – IP – Possible Malicious Endpoint

199.80.53[.]177 – IP – Possible Malicious Endpoint

168.100.9[.]137 – IP – Malicious Endpoint

45.134.26[.]2 – IP – Malicious Endpoint

13.35.147[.]18 – IP – Likely Malicious Endpoint

13.248.193[.]251 – IP – Possible Malicious Endpoint

76.223.1[.]166 – IP – Possible Malicious Endpoint

179.60.147[.]10 – IP – Likely Malicious Endpoint

185.220.101[.]25 – IP – Likely Malicious Endpoint

141.255.167[.]250 – IP – Malicious Endpoint

106.71.177[.]68 – IP – Possible Malicious Endpoint

cat2.hbwrapper[.]com – Hostname – Likely Malicious Endpoint

aj1090[.]online – Hostname – Likely Malicious Endpoint

dc535[.]4sync[.]com – Hostname – Likely Malicious Endpoint

204.155.149[.]140 – IP - Likely Malicious Endpoint

204.155.149[.]132 – IP - Likely Malicious Endpoint

204.155.145[.]52 – IP - Likely Malicious Endpoint

204.155.145[.]49 – IP - Likely Malicious Endpoint

参考文献

  1. https://www.axios.com/2024/01/02/citrix-bleed-security-hacks-impact
  2. https://www.csoonline.com/article/1267774/hackers-steal-data-from-millions-of-xfinity-customers-via-citrix-bleed-vulnerability.html
  3. https://www.cybersecuritydive.com/news/citrixbleed-security-critical-vulnerability/702505/
  4. https://www.virustotal.com/gui/ip-address/168.100.9.137
  5. https://www.virustotal.com/gui/ip-address/45.134.26.2
  6. https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html
  7. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-325a
  8. https://www.file.net/process/m.exe.html
続きを読む
著者について
Vivek Rajan
Cyber Analyst

Blog

Eメール

How to Protect your Organization Against Microsoft Teams Phishing Attacks

Default blog imageDefault blog image
21
May 2024

The problem: Microsoft Teams phishing attacks are on the rise

Around 83% of Fortune 500 companies rely on Microsoft Office products and services1, with Microsoft Teams and Microsoft SharePoint in particular emerging as critical platforms to the business operations of the everyday workplace. Researchers across the threat landscape have begun to observe these legitimate services being leveraged more and more by malicious actors as an initial access method.

As Teams becomes a more prominent feature of the workplace many employees rely on it for daily internal and external communication, even surpassing email usage in some organizations. As Microsoft2 states, "Teams changes your relationship with email. When your whole group is working in Teams, it means you'll all get fewer emails. And you'll spend less time in your inbox, because you'll use Teams for more of your conversations."

However, Teams can be exploited to send targeted phishing messages to individuals either internally or externally, while appearing legitimate and safe. Users might receive an external message request from a Teams account claiming to be an IT support service or otherwise affiliated with the organization. Once a user has accepted, the threat actor can launch a social engineering campaign or deliver a malicious payload. As a primarily internal tool there is naturally less training and security awareness around Teams – due to the nature of the channel it is assumed to be a trusted source, meaning that social engineering is already one step ahead.

Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)
Figure 1: Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)

Microsoft Teams Phishing Examples

Microsoft has identified several major phishing attacks using Teams within the past year.

In July 2023, Microsoft announced that the threat actor known as Midnight Blizzard – identified by the United States as a Russian state-sponsored group – had launched a series of phishing campaigns via Teams with the aim of stealing user credentials. These attacks used previously compromised Microsoft 365 accounts and set up new domain names that impersonated legitimate IT support organizations. The threat actors then used social engineering tactics to trick targeted users into sharing their credentials via Teams, enabling them to access sensitive data.  

At a similar time, threat actor Storm-0324 was observed sending phishing lures via Teams containing links to malicious SharePoint-hosted files. The group targeted organizations that allow Teams users to interact and share files externally. Storm-0324’s goal is to gain initial access to hand over to other threat actors to pursue more dangerous follow-on attacks like ransomware.

Darktrace がMicrosoft Teamsのフィッシングを阻止する方法について、さらに詳しく知りたい方は、ブログをお読みください: 餌に喰いつくな:Darktrace Microsoft Teamsのフィッシング攻撃を阻止する方法

The market: Existing Microsoft Teams security solutions are insufficient

Microsoft’s native Teams security focuses on payloads, namely links and attachments, as the principal malicious component of any phishing. These payloads are relatively straightforward to detect with their experience in anti-virus, sandboxing, and IOCs. However, this approach is unable to intervene before the stage at which payloads are delivered, before the user even gets the chance to accept or deny an external message request. At the same time, it risks missing more subtle threats that don’t include attachments or links – like early stage phishing, which is pure social engineering – or completely new payloads.

Equally, the market offering for Teams security is limited. Security solutions available on the market are always payload-focused, rather than taking into account the content and context in which a link or attachment is sent. Answering questions like:

  • Does it make sense for these two accounts to speak to each other?
  • Are there any linguistic indicators of inducement?

Furthermore, they do not correlate with email to track threats across multiple communication environments which could signal a wider campaign. Effectively, other market solutions aren’t adding extra value – they are protecting against the same types of threats that Microsoft is already covering by default.

The other aspect of Teams security that native and market solutions fail to address is the account itself. As well as focusing on Teams threats, it’s important to analyze messages to understand the normal mode of communication for a user, and spot when a user’s Teams activity might signal account takeover.

The solution: How Darktrace protects Microsoft Teams against sophisticated threats

With its biggest update to Darktrace/Email ever, Darktrace now offers support for Microsoft Teams. With that, we are bringing the same AI philosophy that protects your email and accounts to your messaging environment.  

Our Self-Learning AI looks at content and context for every communication, whether that’s sent in an email or Teams message. It looks at actual user behavior, including language patterns, relationship history of sender and recipient, tone and payloads, to understand if a message poses a threat. This approach allows Darktrace to detect threats such as social engineering and payloadless attacks using visibility and forensic capabilities that Microsoft security doesn’t currently offer, as well as early symptoms of account compromise.  

Unlike market solutions, Darktrace doesn’t offer a siloed approach to Teams security. Data and signals from Teams are shared across email to inform detection, and also with the wider Darktrace ActiveAI security platform. By correlating information from email and Teams with network and apps security, Darktrace is able to better identify suspicious Teams activity and vice versa.  

Interested in the other ways Darktrace/Email augments threat detection? Read our latest blog on how improving the quality of end-user reporting can decrease the burden on the SOC. To find our more about Darktrace's enduring partnership with Microsoft, click here.

参考文献

[1] Essential Microsoft Office Statistics in 2024

[2] Microsoft blog, Microsoft Teams and email, living in harmony, 2024

続きを読む
著者について
Carlos Gray
Product Manager
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.