Blog

Inside the SOC

The Unknown Unknowns: Post-Exploitation Activities of Ivanti CS/PS Appliances

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jan 2024
26
Jan 2024
Since January 15, 2024, Darktrace’s SOC and Threat Research teams have observed a surge in malicious activities targeting Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. This blog provides details of these activities, along with details of Darktrace's coverage of associated patterns of network traffic..

What are 'Unknown Unknowns'?

When critical vulnerabilities in Internet-facing assets are not yet publicly disclosed, they can provide unfettered access to organizations’ networks. Threat actors’ exploitation of these vulnerabilities are prime examples of “unknown unknowns” – behaviors which security teams are not even aware that they are not aware of.  

Therefore, it is not surprising that zero-day vulnerabilities in Internet-facing assets are so attractive to state-linked actors and cybercriminals. These criminals will abuse the access these vulnerabilities afford them to progress towards harmful or disruptive objectives. This trend in threat actor activity was particularly salient in January 2024, following the disclosure of two critical vulnerabilities in Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. The widespread exploitation of these vulnerabilities was mirrored across Darktrace’s customer base in mid-January 2024, with Darktrace’s Security Operations Center (SOC) and Threat Research teams observing a surge in malicious activities targeting customers’ CS/PS appliances.

Vulnerabilities in Ivanti CS/PS

On January 10, 2024, Ivanti published a Security Advisory [1] and a Knowledge Base article [2] relating to the following two vulnerabilities in Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS):

  • CVE-2023-46805 (CVSS: 8.2; Type: Authentication bypass vulnerability)
  • CVE-2024-21887 (CVSS: 9.1; Type: Command injection vulnerability)

Conjoined exploitation of these vulnerabilities allows for unauthenticated, remote code execution (RCE) on vulnerable Ivanti systems. Volexity [3] and Mandiant [4] reported clusters of CS/PS compromises, tracked as UTA0178 and UNC5221 respectively. UTA0178 and UNC5221 compromises involve exploitation of CVE-2023-46805 and CVE-2024-21887 to deliver web shells and JavaScript credential harvesters to targeted CS/PS appliances. Both Volexity and Mandiant linked these compromises to a likely espionage-motivated, state-linked actor. GreyNoise [5] and Volexity [6] also reported likely cybercriminal activities targeting CS/PS appliances to deliver cryptominers.

The scale of this recent Ivanti CS/PS exploitation is illustrated by research findings recently shared by Censys [7]. According to these findings, as of January 22, around 1.5% of 26,000 Internet-exposed Ivanti CS appliances have been compromised, with the majority of compromised hosts falling within the United States. As cybercriminal interest in these Ivanti CS/PS vulnerabilities continues to grow, it is likely that so too will the number of attacks targeting them.

Observed Malicious Activities

Since January 15, 2024, Darktrace’s SOC and Threat Research team have observed a significant volume of malicious activities targeting customers’ Ivanti CS/PS appliances. Amongst the string of activities that were observed, the following threads were identified as salient:

  • Exploit validation activity
  • Exfiltration of system information
  • Delivery of C2 implant from AWS
  • Delivery of JavaScript credential stealer
  • SimpleHelp usage
  • Encrypted C2 on port 53
  • Delivery of cryptominer

Exploit Validation Activity

Malicious actors were observed using the out-of-band application security testing (OAST) services, Interactsh and Burp Collaborator, to validate exploits for CS/PS vulnerabilities. Malicious use of OAST services for exploit validation is common and has been seen in the early stages of previous campaigns targeting Ivanti systems [8]. In this case, the Interact[.]sh exploit tests were evidenced by CS/PS appliances making GET requests with a cURL User-Agent header to subdomains of 'oast[.]live', 'oast[.]site', 'oast[.]fun', 'oast[.]me', 'oast[.]online' and 'oast[.]pro'.  Burp Collaborator exploit tests were evidenced by CS/PS appliances making GET requests with a cURL User-Agent header to subdomains of ‘collab.urmcyber[.]xyz’ and ‘dnslog[.]store’.

Figure 1: Event Log showing a CS/PS appliance contacting an 'oast[.]pro' endpoint.
Figure 2: Event Log showing a CS/PS appliance contacting a 'collab.urmcyber[.]xyz' endpoint.
Figure 3: Packet capture (PCAP) of an Interactsh GET request.
Figure 4: PCAP of a Burp Collaborator GET request.

Exfiltration of System Information

The majority of compromised CS/PS appliances identified by Darktrace were seen using cURL to transfer hundreds of MBs of data to the external endpoint, 139.180.194[.]132. This activity appeared to be related to a threat actor attempting to exfiltrate system-related information from CS/PS appliances. These data transfers were carried out via HTTP on ports 443 and 80, with the Target URIs ‘/hello’ and ‘/helloq’ being seen in the relevant HTTP POST requests. The files sent over these data transfers were ‘.dat’ and ‘.sys’ files with what seems to be the public IP address of the targeted appliance appearing in each file’s name.

Figure 5: Event Log shows a CS/PS appliance making a POST request to 139.180.194[.]132 whilst simultaneously receiving connections from suspicious external endpoints.
Figure 6: PCAP of a POST request to 139.180.194[.]132.

Delivery of Command-and-Control (C2) implant from Amazon Web Services (AWS)

In many of the compromises observed by Darktrace, the malicious actor in question was observed delivering likely Rust-based ELF payloads to the CS/PS appliance from the AWS endpoints, archivevalley-media.s3.amazonaws[.]com, abode-dashboard-media.s3.ap-south-1.amazonaws[.]com, shapefiles.fews.net.s3.amazonaws[.]com, and blooming.s3.amazonaws[.]com. In one particular case, these downloads were immediately followed by the delivery of an 18 MB payload (likely a C2 implant) from the AWS endpoint, be-at-home.s3.ap-northeast-2.amazonaws[.]com, to the CS/PS appliance. Post-delivery, the implant seems to have initiated SSL beaconing connections to the external host, music.farstream[.]org. Around this time, Darktrace also observed the actor initiating port scanning and SMB enumeration activities from the CS/PS appliance, likely in preparation for moving laterally through the network.

Figure 7: Advanced Search logs showing a CS/PS appliance beaconing to music.farstream[.]org after downloading several payloads from AWS.

Delivery of JavaScript credential stealer

In a small number of observed cases, Darktrace observed malicious actors delivering what appeared to be a JavaScript credential harvester to targeted CS/PS appliances. The relevant JavaScript code contains instructions to send login credentials to likely compromised websites. In one case, the website, www.miltonhouse[.]nl, appeared in the code snippet, and in another, the website, cpanel.netbar[.]org, was observed. Following the delivery of this JavaScript code, HTTPS connections were observed to these websites.  This likely credential harvester appears to strongly resemble the credential stealer observed by Mandiant (dubbed ‘WARPWIRE’) in UNC5221 compromises and the credential stealer observed by Veloxity in UTA0178 compromises.

Figure 8: PCAP of ‘/3.js’ GET request for JavaScript credential harvester.
Figure 9: Snippet of response to '/3.js’ GET request.
Figure 10: PCAP of ‘/auth.js’ GET request for JavaScript credential harvester.
Figure 11: Snippet of response to '/auth.js’ GET request.
Figure 12: Advanced Search logs showing VPN-connected devices sending data to www.miltonhouse[.]nl after the Ivanti CS appliance received the JavaScript code.

The usage of this JavaScript credential harvester did not occur in isolation, but rather appears to have occurred as part of a chain of activity involving several further steps. The delivery of the ‘www.miltonhouse[.]nl’ JavaScript stealer seems to have occurred as a step in the following attack chain:  

1. Ivanti CS/PS appliance downloads a 8.38 MB ELF file over HTTP (with Target URI ‘/revsocks_linux_amd64’) from 188.116.20[.]38

2. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 8444 to 185.243.112[.]245, with several MBs of data being exchanged

3. Ivanti CS/PS appliance downloads a Perl script over HTTP (with Target URI ‘/login.txt’) from 188.116.20[.]38

4. Ivanti CS/PS appliance downloads a 1.53 ELF MB file over HTTP (with Target URI ‘/aparche2’) from 91.92.240[.]113

5. Ivanti CS/PS appliance downloads a 4.5 MB ELF file over HTTP (with Target URI ‘/agent’) from 91.92.240[.]113

6. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]215, with several MBs of data being exchanged

7. Ivanti CS/PS appliance downloads Javascript credential harvester over HTTP (with Target URI ‘/auth.js’) from 91.92.240[.]113

8. Ivanti CS/PS appliance downloads a Perl script over HTTP (with Target URI ‘/login.cgi’) from 91.92.240[.]113

9. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 91.92.240[.]71, with several MBs of data being exchanged

10. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]215, with several MBs of data being exchanged

11. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 8080 to 91.92.240[.]113, with several MBs of data being exchanged

12. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]112, with several MBs of data being exchanged  

These long SSL connections likely represent a malicious actor creating reverse shells from the targeted CS/PS appliance to their C2 infrastructure. Whilst it is not certain that these behaviors are part of the same attack chain, the similarities between them (such as the Target URIs, the JA3 client fingerprint and the use of port 11601) seem to suggest a link.  

Figure 13: Advanced Search logs showing a chain of malicious behaviours from a CS/PS appliance.
Figure 14: Advanced Search data showing the JA3 client fingerprint ‘19e29534fd49dd27d09234e639c4057e’ exclusively appearing in the aforementioned, long SSL connections from the targeted CS/PS appliance.
Figure 15: PCAP of ‘/login.txt’ GET request for a Perl script.
Figure 16: PCAP of ‘/login.cgi’ GET request for a Pearl script.

SimpleHelp Usage

After gaining a foothold on vulnerable CS/PS appliances, certain actors attempted to deepen their foothold within targeted networks. In several cases, actors were seen using valid account credentials to pivot over RDP from the vulnerable CS/PS appliance to other internal systems. Over these RDP connections, the actors appear to have installed the remote support tool, SimpleHelp, onto targeted internal systems, as evidenced by these systems’ subsequent HTTP requests. In one of the observed cases, a lateral movement target downloaded a 7.33 MB executable file over HTTP (Target URI: /ta.dat; User-Agent header: Microsoft BITS/7.8) from 45.9.149[.]215 just before showing signs of SimpleHelp usage. The apparent involvement of 45.9.149[.]215 in these SimpleHelp threads may indicate a connection between them and the credential harvesting thread outlined above.

Figure 17: Advanced Search logs showing an internal system making SimpleHelp-indicating HTTP requests immediately after receiving large volumes of data over RDP from an CS/PS appliance.
Figure 18: PCAP of a SimpleHelp-related GET request.

Encrypted C2 over port 53

In a handful of the recently observed CS/PS compromises, Darktrace identified malicious actors dropping a 16 MB payload which appears to use SSL-based C2 communication on port 53. C2 communication on port 53 is a commonly used attack method, with various malicious payloads, including Cobalt Strike DNS, being known to tunnel C2 communications via DNS requests on port 53. Encrypted C2 communication on port 53, however, is less common. In the cases observed by Darktrace, payloads were downloaded from 103.13.28[.]40 and subsequently reached back out to 103.13.28[.]40 over SSL on port 53.

Figure 19: PCAP of a ‘/linb64.png’ GET request.
Figure 20: Advanced Search logs showing a CS/PS appliance making SSL conns over port 53 to 103.13.28[.]40 immediately after downloading a 16 MB payload from 103.13.28[.]40.

Delivery of cryptominer

As is often the case, financially motivated actors also appeared to have sought to exploit the Ivanti appliances, with actors observed exploiting CS/PS appliances to deliver cryptomining malware. In one case, Darktrace observed an actor installing a Monero cryptominer onto a vulnerable CS/PS appliance, with the miner being downloaded via HTTP on port 8089 from 192.252.183[.]116.

Figure 21: PCAP of GET request for a Bash script which appeared to kill existing cryptominers.
Figure 22: PCAP of a GET request for a JSON config file – returned config file contains mining details such as ‘auto.3pool[.]org:19999’.
Figure 23: PCAP of a GET request for an ELF payload

Potential Pre-Ransomware Post-Compromise Activity

In one observed case, a compromise of a customer’s CS appliance was followed by an attacker using valid account credentials to connect to the customer’s CS VPN subnet. The attacker used these credentials to pivot to other parts of the customer’s network, with tools and services such as PsExec, Windows Management Instrumentation (WMI) service, and Service Control being abused to facilitate the lateral movement. Other Remote Monitoring and Management (RMM) tools, such as AnyDesk and ConnectWise Control (previously known as ScreenConnect), along with certain reconnaissance tools such as Netscan, Nmap, and PDQ, also appear to have been used. The attacker subsequently exfiltrated data (likely via Rclone) to the file storage service, put[.]io, potentially in preparation for a double extortion ransomware attack. However, at the time of writing, it was not clear what the relation was between this activity and the CS compromise which preceded it.

Darktrace のカバレッジ

Darktrace has observed malicious actors carrying out a variety of post-exploitation activities on Internet-exposed CS/PS appliances, ranging from data exfiltration to the delivery of C2 implants and crypto-miners. These activities inevitably resulted in CS/PS appliances displaying patterns of network traffic greatly deviating from their typical “patterns of life”.

Darktrace DETECT™ identified these deviations and generated a variety of model breaches (i.e, alerts) highlighting the suspicious activity. Darktrace’s Cyber AI Analyst™ autonomously investigated the ongoing compromises and connected the individual model breaches, viewing them as related incidents rather than isolated events. When active and configured in autonomous response mode, Darktrace RESPOND™ containted attackers’ operations by autonomously blocking suspicious patterns of network traffic as soon as they were identified by Darktrace DETECT.

The exploit validation activities carried out by malicious actors resulted in CS/PS servers making HTTP connections with cURL User-Agent headers to endpoints associated with OAST services such as Interactsh and Burp Collaborator. Darktrace DETECT recognized that this HTTP activity was suspicious for affected devices, causing the following models to breach:

  • Compromise / Possible Tunnelling to Bin Services
  • Device / Suspicious Domain
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Device / New User Agent
Figure 24: Event Log showing a CS/PS appliance breaching models due to its Interactsh HTTP requests.
Figure 25: Cyber AI Analyst Incident Event highlighting a CS/PS appliance's Interactsh connections.

Malicious actors’ uploads of system information to 139.180.194[.]132 resulted in cURL POST requests being sent from the targeted CS/PS appliances. Darktrace DETECT judged these HTTP POST requests to be anomalous, resulting in combinations of the following model breaches:

  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Unusual Activity / Unusual External Data Transfer
  • Unusual Activity / Unusual External Data to New Endpoint
  • Anomalous Connection / Data Sent to Rare Domain
Figure 26: Event Log showing the creation of a model breach due to a CS/PS appliance’s POST request to 139.180.194[.]132.
Figure 27: Cyber AI Analyst Incident Event highlighting POST requests from a CS/PS appliance to 139.180.194[.]132.

The installation of AWS-hosted C2 implants onto vulnerable CS/PS appliances resulted in beaconing connections which Darktrace DETECT recognized as anomalous, leading to the following model breaches:

  • Compromise / Beacon to Young Endpoint
  • Compromise / Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score

When enabled in autonomous response mode, Darktrace RESPOND was able to follow up these detections by blocking affected devices from connecting externally over port 80, 443, 445 or 8081, effectively shutting down the attacker’s beaconing activity.

Figure 28: Event Log showing the creation of a model breach and the triggering of an autonomous RESPOND action due to a CS/PS appliance's beaconing connections.

The use of encrypted C2 on port 53 by malicious actors resulted in CS/PS appliances making SSL connections over port 53. Darktrace DETECT judged this port to be uncommon for SSL traffic and consequently generated the following model breach:

  • Anomalous Connection / Application Protocol on Uncommon Port
Figure 29: Cyber AI Analyst Incident Event highlighting a ‘/linb64.png’ GET request from a CS/PS appliance to 103.13.28[.]40.
Figure 30: Event Log showing the creation of a model breach due to CS/PS appliance’s external SSL connection on port 53.
Figure 31: Cyber AI Analyst Incident Event highlighting a CS/PS appliance’s SSL connections over port 53 to 103.13.28[.]40.

Malicious actors’ attempts to run cryptominers on vulnerable CS/PS appliances resulted in downloads of Bash scripts and JSON files from external endpoints rarely visited by the CS/PS appliances themselves or by neighboring systems. Darktrace DETECT identified these deviations in device behavior and generated the following model breaches:

  • Anomalous File / Script from Rare External Location
  • Anomalous File / Internet Facing System File Download

Darktrace RESPOND, when configured to respond autonomously, was subsequently able to carry out a number of actions to contain the attacker’s activity. This included blocking all outgoing traffic on offending devices and enforcing a “pattern of life” on devices ensuring they had to adhere to expected network behavior.

Figure 32: Event Log showing the creation of model breaches and the triggering of autonomous RESPOND actions in response to a CS/PS appliance’s cryptominer download.
Figure 33: Cyber AI Analyst Incident Event highlighting a CS/PS appliance’s cryptominer download.

The use of RDP to move laterally and spread SimpleHelp to other systems resulted in CS/PS appliances using privileged credentials to initiate RDP sessions. These RDP sessions, and the subsequent traffic resulting from usage of SimpleHelp, were recognized by Darktrace DETECT as being highly out of character, prompting the following model breaches:

  • Anomalous Connection / Unusual Admin RDP Session
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Compromise / Suspicious HTTP Beacons to Dotted Quad
  • Anomalous File / Anomalous Octet Stream (No User Agent)
  • Anomalous Server Activity / Rare External from Server
Figure 34: Event Log showing the creation of a model breach due to a CS/PS appliance’s usage of an admin credential to RDP to another internal system.
Figure 35: Event Log showing the creation of model breaches due to SimpleHelp-HTTP requests from a device targeted for lateral movement.
Figure 36: Cyber AI Analyst Incident Event highlighting the SimpleHelp-indicating HTTP requests made by an internal system.

結論

The recent widespread exploitation of Ivanti CS/PS is a stark reminder of the threat posed by malicious actors armed with exploits for Internet-facing assets.

Based on the telemetry available to Darktrace, a wide range of malicious activities were carried out against CS/PS appliances, likely via exploitation of the recently disclosed CVE-2023-46805 and CVE-2024-21887 vulnerabilities.

These activities include the usage of OAST services for exploit validation, the exfiltration of system information to 139.180.194[.]132, the delivery of AWS-hosted C2 implants, the delivery of JavaScript credential stealers, the usage of SimpleHelp, the usage of SSL-based C2 on port 53, and the delivery of crypto-miners. These activities are far from exhaustive, and many more activities will undoubtedly be uncovered as the situation develops and our understanding grows.

While there were no patches available at the time of writing, Ivanti stated that they were expected to be released shortly, with the “first version targeted to be available to customers the week of 22 January 2023 and the final version targeted to be available the week of 19 February” [9].

Fortunately for vulnerable customers, in their absence of patches Darktrace DETECT was able to identify and alert for anomalous network activity that was carried out by malicious actors who had been able to successfully exploit the Ivanti CS and PS vulnerabilities. While the activity that followed these zero-day vulnerabilities may been able to have bypass traditional security tools reliant upon existing threat intelligence and indicators of compromise (IoCs), Darktrace’s anomaly-based approach allows it to identify such activity based on the subtle deviations in a devices behavior that typically emerge as threat actors begin to work towards their goals post-compromise.

In addition to Darktrace’s ability to identify this type of suspicious behavior, its autonomous response technology, Darktrace RESPOND is able to provide immediate follow-up with targeted mitigative actions to shut down malicious activity on affected customer environments as soon as it is detected.

Credit to: Nahisha Nobregas, SOC Analyst, Emma Foulger, Principle Cyber Analyst, and the Darktrace Threat Research Team

付録

List of IoCs Possible IoCs:

-       curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.3

-       curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7

Mid-high confidence IoCs:

-       http://139.180.194[.]132:443/hello

-       http://139.180.194[.]132:443/helloq

-       http://blooming.s3.amazonaws[.]com/Ea7fbW98CyM5O (SHA256 hash: 816754f6eaf72d2e9c69fe09dcbe50576f7a052a1a450c2a19f01f57a6e13c17)

-       http://abode-dashboard-media.s3.ap-south-1.amazonaws[.]com/kaffMm40RNtkg (SHA256 hash: 47ff0ae9220a09bfad2a2fb1e2fa2c8ffe5e9cb0466646e2a940ac2e0cf55d04)

-       http://archivevalley-media.s3.amazonaws[.]com/bbU5Yn3yayTtV (SHA256 hash: c7ddd58dcb7d9e752157302d516de5492a70be30099c2f806cb15db49d466026)

-       http://shapefiles.fews.net.s3.amazonaws[.]com/g6cYGAxHt4JC1 (SHA256 hash: c26da19e17423ce4cb4c8c47ebc61d009e77fc1ac4e87ce548cf25b8e4f4dc28)

-       http://be-at-home.s3.ap-northeast-2.amazonaws[.]com/2ekjMjslSG9uI

-       music.farstream[.]org  • 104.21.86[.]153 / 172.67.221[.]78

-       http://197.243.22[.]27/3.js

-       http://91.92.240[.]113/auth.js

-       www.miltonhouse[.]nl • 88.240.53[.]22

-       cpanel.netbar[.]org • 146.19.212[.]12

-       http://188.116.20[.]38/revsocks_linux_amd64

-       185.243.112[.]245:8444

-        http://188.116.20[.]38/login.txt

-       http://91.92.240[.]113/aparche2 (SHA256 hash: 9d11c3cf10b20ff5b3e541147f9a965a4e66ed863803c54d93ba8a07c4aa7e50)

-       http://91.92.240[.]113/agent (SHA256 hash: 7967def86776f36ab6a663850120c5c70f397dd3834f11ba7a077205d37b117f)

-       45.9.149[.]215:11601

-       45.9.149[.]112:11601

-       http://91.92.240[.]113/login.cgi

-       91.92.240[.]71:11601

-       91.92.240[.]113:8080

-       http://45.9.149[.]215/ta.dat (SHA256 hash: 4bcf1333b3ad1252d067014c606fb3a5b6f675f85c59b69ca45669d45468e923)

-       91.92.241[.]18

-       94.156.64[.]252

-       http://144.172.76[.]76/lin86

-       144.172.122[.]14:443

-       http://185.243.115[.]58:37586/

-       http://103.13.28[.]40/linb64.png

-       103.13.28[.]40:53

-       159.89.82[.]235:8081

-       http://192.252.183[.]116:8089/u/123/100123/202401/d9a10f4568b649acae7bc2fe51fb5a98.sh

-       http://192.252.183[.]116:8089/u/123/100123/202401/sshd

-       http://192.252.183[.]116:8089/u/123/100123/202401/31a5f4ceae1e45e1a3cd30f5d7604d89.json

-       http://103.27.110[.]83/module/client_amd64

-       http://103.27.110[.]83/js/bootstrap.min.js?UUID=...

-       http://103.27.110[.]83/js/jquery.min.js

-       http://95.179.238[.]3/bak

-       http://91.92.244[.]59:8080/mbPHenSdr6Cf79XDAcKEVA

-       31.220.30[.]244

-       http://172.245.60[.]61:8443/SMUkbpX-0qNtLGsuCIuffAOLk9ZEBCG7bIcB2JT6GA/

-       http://172.245.60[.]61/ivanti

-       http://89.23.107[.]155:8080/l-5CzlHWjkp23gZiVLzvUg

-       http://185.156.72[.]51:8080/h7JpYIZZ1-rrk98v3YEy6w

-       http://185.156.72[.]51:8080/8uSQsOTwFyEAsXVwbAJ2mA

-       http://185.156.72[.]51:8080/vuln

-       185.156.72[.]51:4440

-       185.156.72[.]51:8080

-       185.156.72[.]51:4433

-       185.156.72[.]51:4446

-       185.156.72[.]51:4445

-       http://185.156.72[.]51/set.py

-       185.156.72[.]51:7777

-       45.9.151[.]107:7070

-       185.195.59[.]74:7070

-       185.195.59[.]74:20958

-       185.195.59[.]74:34436

-       185.195.59[.]74:37464

-       185.195.59[.]74:41468    

参考文献

[1] https://forums.ivanti.com/s/article/CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US

[2] https://forums.ivanti.com/s/article/KB-CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US

[3] https://www.volexity.com/blog/2024/01/10/active-exploitation-of-two-zero-day-vulnerabilities-in-ivanti-connect-secure-vpn/

[4] https://www.mandiant.com/resources/blog/suspected-apt-targets-ivanti-zero-day

[5] https://www.greynoise.io/blog/ivanti-connect-secure-exploited-to-install-cryptominers

[6] https://www.volexity.com/blog/2024/01/18/ivanti-connect-secure-vpn-exploitation-new-observations/

[7] https://censys.com/the-mass-exploitation-of-ivanti-connect-secure/

[8] https://darktrace.com/blog/entry-via-sentry-analyzing-the-exploitation-of-a-critical-vulnerability-in-ivanti-sentry

[9] https://forums.ivanti.com/s/article/CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US  

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
この記事を共有
USE CASES
該当する項目はありません。
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

Inside the SOC

Gootloader Malware: Detecting and Containing Multi-Functional Threats with Darktrace

Default blog imageDefault blog image
15
Feb 2024

What is multi-functional malware?

While traditional malware variants were designed with one specific objective in mind, the emergence of multi-functional malware, such as loader malware, means that organizations are likely to be confronted with multiple malicious tools and strains of malware at once. These threats often have non-linear attack patterns and kill chains that can quickly adapt and progress quicker than human security teams are able to react. Therefore, it is more important than ever for organizations to adopt an anomaly approach to combat increasingly versatile and fast-moving threats.

Example of Multi-functional malware

One example of a multi-functional malware recently observed by Darktrace can be seen in Gootloader, a multi-payload loader variant that has been observed in the wild since 2020. It is known to primarily target Windows-based systems across multiple industries in the US, Canada, France, Germany, and South Korea [1].  

How does Gootloader malware work?

Once installed on a target network, Gootloader can download additional malicious payloads that allow threat actors to carry out a range of harmful activities, such as stealing sensitive information or encrypting files for ransom.

The Gootloader malware is known to infect networks via search engine optimization (SEO) poisoning, directing users searching for legitimate documents to compromised websites hosting a malicious payload masquerading as the desired file.

If the malware remains undetected, it paves the way for a second stage payload known as Gootkit, which functions as a banking trojan and information-stealer, or other malware tools including Cobalt Strike and Osiris [2].

Darktrace detection of Gootloader malware

In late 2023, Darktrace observed one instance of Gootloader affecting a customer in the US. Thanks to its anomaly-focused approach, Darktrace DETECT™ quickly identified the anomalous activity surrounding this emerging attack and brought it to the immediate attention of the customer’s security team. All the while, Darktrace RESPOND™ was in place and able to autonomously intervene, containing the suspicious activity and ensuring the Gootloader compromise could not progress any further.

In September 2023, Darktrace identified an instance of the Gootloader malware attempting to propagate within the network of a customer in the US. Darktrace identified the first indications of the compromise when it detected a device beaconing to an unusual external location and performing network scanning. Following this, the device was observed making additional command-and-control (C2) connections, before finally downloading an executable (.exe) file which likely represented the download of a further malicious payload.

As this customer had subscribed to the Proactive Notification Service (PTN), the suspicious activity was escalated to the Darktrace Security Operations Center (SOC) for further investigation by Darktrace’s expert analysts. The SOC team were able to promptly triage the incident and advise urgent follow-up actions.

Gootloader Attack Overview

Figure 1: Timeline of Anomalous Activities seen on the breach device.

Initial Beaconing and Scanning Activity

On September 21, 2023, Darktrace observed the first indications of compromise on the network when a device began to make regular connections to an external endpoint that was considered extremely rare for the network, namely ‘analyzetest[.]ir’.

Although the endpoint did not overtly seem malicious in nature (it appeared to be related to laboratory testing), Darktrace recognized that it had never previously been seen on the customer’s network and therefore should be treated with caution.  This initial beaconing activity was just the beginning of the malicious C2 communications, with several additional instances of beaconing detected to numerous suspicious endpoints, including funadhoo.gov[.]mv, tdgroup[.]ru’ and ‘army.mil[.]ng.

Figure 2: Initial beaconing activity detected on the breach device.

Soon thereafter, Darktrace detected the device performing internal reconnaissance, with an unusually large number of connections to other internal locations observed. This scanning activity appeared to primarily be targeting the SMB protocol by scanning port 445.

Within seconds of DETECT’s detection of this suspicious SMB scanning activity, Darktrace RESPOND moved to contain the compromise by blocking the device from connecting to port 445 and enforcing its ‘pattern of life’. Darktrace’s Self-Learning AI enables it to learn a device’s normal behavior and recognize if it deviates from this; by enforcing a pattern of life on an affected device, malicious activity is inhibited but the device is allowed to continue its expected activity, minimizing disruption to business operations.

Figure 3: The breach device Model Breach Event Log showing Darktrace DETECT identifying suspicious SMB scanning activity and the corresponding RESPOND actions.

Following the initial detection of this anomalous activity, Darktrace’s Cyber AI Analyst launched an autonomous investigation into the beaconing and scanning activity and was able to connect these seemingly separate events into one incident. AI Analyst analyzes thousands of connections to hundreds of different endpoints at machine speed and then summarizes its findings in a single pane of glass, giving customers the necessary information to assess the threat and begin remediation if necessary. This significantly lessens the burden for human security teams, saving them previous time and resources, while ensuring they maintain full visibility over any suspicious activity on their network.

Figure 4: Cyber AI Analyst incident log summarizing the technical details of the device’s beaconing and scanning behavior.

Beaconing Continues

Darktrace continued to observe the device carrying out beaconing activity over the next few days, likely representing threat actors attempting to establish communication with their malicious infrastructure and setting up a foothold within the customer’s environment. In one such example, the device was seen connecting to the suspicious endpoint ‘fysiotherapie-panken[.]nl’. Multiple open-source intelligence (OSINT) vendors reported this endpoint to be a known malware delivery host [3].

Once again, Darktrace RESPOND was in place to quickly intervene in response to these suspicious external connection attempts. Over the course of several days, RESPOND blocked the offending device from connecting to suspicious endpoints via port 443 and enforced its pattern of life. These autonomous actions by RESPOND effectively mitigated and contained the attack, preventing it from escalating further along the kill chain and providing the customer’s security team crucial time to take act and employ their own remediation.

Figure 5: A sample of the autonomous RESPOND actions that was applied on the affected device.

Possible Payload Retrieval

A few days later, on September 26, 2023, Darktrace observed the affected device attempting to download a Windows Portable Executable via file transfer protocol (FTP) from the external location ‘ftp2[.]sim-networks[.]com’, which had never previously been seen on the network. This download likely represented the next step in the Gootloader infection, wherein additional malicious tooling is downloaded to further cement the malicious actors’ control over the device. In response, Darktrace RESPOND immediately blocked the device from making any external connections, ensuring it could not download any suspicious files that may have rapidly escalated the attackers’ efforts.

Figure 6: DETECT’s identification of the offending device downloading a suspicious executable file via FTP.

The observed combination of beaconing activity and a suspicious file download triggered an Enhanced Monitoring breach, a high-fidelity DETECT model designed to detect activities that are more likely to be indicative of compromise. These models are monitored by the Darktrace SOC round the clock and investigated by Darktrace’s expert team of analysts as soon as suspicious activity emerges.

In this case, Darktrace’s SOC triaged the emerging activity and sent an additional notice directly to the customer’s security team, informing them of the compromise and advising on next steps. As this customer had subscribed to Darktrace’s Ask the Expert (ATE) service, they also had a team of expert analysts available to them at any time to aid their investigations.

Figure 7: Enhanced Monitoring Model investigated by the Darktrace SOC.

結論

Loader malware variants such as Gootloader often lay the groundwork for further, potentially more severe threats to be deployed within compromised networks. As such, it is crucial for organizations and their security teams to identify these threats as soon as they emerge and ensure they are effectively contained before additional payloads, like information-stealing malware or ransomware, can be downloaded.

In this instance, Darktrace demonstrated its value when faced with a multi-payload threat by detecting Gootloader at the earliest stage and responding to it with swift targeted actions, halting any suspicious connections and preventing the download of any additional malicious tooling.

Darktrace DETECT recognized that the beaconing and scanning activity performed by the affected device represented a deviation from its expected behavior and was indicative of a potential network compromise. Meanwhile, Darktrace RESPOND ensured that any suspicious activity was promptly shut down, buying crucial time for the customer’s security team to work with Darktrace’s SOC to investigate the threat and quarantine the compromised device.

Credit to: Ashiq Shafee, Cyber Security Analyst, Qing Hong Kwa, Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore

付録

Darktrace DETECT によるモデル検知

Anomalous Connection / Rare External SSL Self-Signed

Device / Suspicious SMB Scanning Activity

Anomalous Connection / Young or Invalid Certificate SSL Connections to Rare

Compromise / High Volume of Connections with Beacon Score

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / Slow Beaconing Activity To External Rare

Compromise / Beacon for 4 Days

Anomalous Connection / Suspicious Expired SSL

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Compromise / Sustained SSL or HTTP Increase

Compromise / Large Number of Suspicious Successful Connections

Compromise / Large Number of Suspicious Failed Connections

Device / Large Number of Model Breaches

Anomalous File / FTP Executable from Rare External Location

Device / Initial Breach Chain Compromise

RESPOND Models

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network/Insider Threat/Antigena Network Scan Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

侵害指標(IoC)一覧

Type

Hostname

IoCs + Description

explorer[.]ee - C2 Endpoint

fysiotherapie-panken[.]nl- C2 Endpoint

devcxp2019.theclearingexperience[.]com- C2 Endpoint

campsite.bplaced[.]net- C2 Endpoint

coup2pompes[.]fr- C2 Endpoint

analyzetest[.]ir- Possible C2 Endpoint

tdgroup[.]ru- C2 Endpoint

ciedespuys[.]com- C2 Endpoint

fi.sexydate[.]world- C2 Endpoint

funadhoo.gov[.]mv- C2 Endpoint

geying.qiwufeng[.]com- C2 Endpoint

goodcomix[.]fun- C2 Endpoint

ftp2[.]sim-networks[.]com- Possible Payload Download Host

MITRE ATT&CK マッピング

Tactic – Technique

Reconnaissance - Scanning IP blocks (T1595.001, T1595)

Command and Control - Web Protocols , Application Layer Protocol, One-Way Communication, External Proxy, Non-Application Layer Protocol, Non-Standard Port (T1071.001/T1071, T1071, T1102.003/T1102, T1090.002/T1090, T1095, T1571)

Collection – Man in the Browser (T1185)

Resource Development - Web Services, Malware (T1583.006/T1583, T1588.001/T1588)

Persistence - Browser Extensions (T1176)

参考文献

1.     https://www.blackberry.com/us/en/solutions/endpoint-security/ransomware-protection/gootloader

2.     https://redcanary.com/threat-detection-report/threats/gootloader/

3.     https://www.virustotal.com/gui/domain/fysiotherapie-panken.nl

続きを読む
著者について
Ashiq Shafee
Cyber Security Analyst

Blog

該当する項目はありません。

Seven Cyber Security Predictions for 2024

Default blog imageDefault blog image
13
Feb 2024

2024 Cyber Threat Predictions

After analyzing the observed threats and trends that have affected customers across the Darktrace fleet in the second half of 2023, the Darktrace Threat Research team have made a series of predictions. These assessments highlight the threats that are expected to impact Darktrace customers and the wider threat landscape in 2024.  

1. Initial access broker malware, especially loader malware, is likely to be a prominent threat.  

Initial access malware such as loaders, information stealers, remote access trojans (RATs), and downloaders, will probably remain some of the most relevant threats to most organizations, especially when noted in the context that many are interoperable, tailorable Malware-as-a-Service (MaaS) tools.  

These types of malware often serve as a gateway for threat actors to compromise a target network before launching subsequent, and often more severe, attacks. Would-be cyber criminals are now able to purchase and deploy these malware without the need for technical expertise.  

2. Infrastructure complexity will increase SaaS attacks and leave cloud environments vulnerable.

The increasing reliance on SaaS solutions and platforms for business operations, coupled with larger attack surfaces than ever before, make it likely that attackers will continue targeting organizations’ cloud environments with account takeovers granting unauthorized access to privileged accounts. These account hijacks can be further exploited to perform a variety of nefarious activities, such as data exfiltration or launching phishing campaigns.  

It is paramount for organizations to not only fortify their SaaS environments with security strategies including multifactor authentication (MFA), regular monitoring of credential usage, and strict access control, but moreover augment SaaS security using anomaly detection.  

3. The prevalence and evolution of ransomware will surge.

The Darktrace Threat Research team anticipates a surge in Ransomware-as-a-Service (RaaS) attacks, marking a shift away from conventional ransomware. The uptick in RaaS observed in 2023 evidences that ransomware itself is becoming increasingly accessible, lowering the barrier to entry for threat actors. This surge also demonstrates how lucrative RaaS is for ransomware operators in the current threat landscape, further reinforcing a rise in RaaS.  

This development is likely to coincide with a pivot away from traditional encryption-centric ransomware tactics towards more sophisticated and advanced extortion methods. Rather than relying solely on encrypting a target’s data for ransom, malicious actors are expected to employ double or even triple extortion strategies, encrypting sensitive data but also threatening to leak or sell stolen data unless their ransom demands are met.  

4. Threat actors will continue to rely on living-off-the-land techniques.

With evolving sophistication of security tools and greater industry adoption of AI techniques, threat actors have focused more and more on living-off-the-land. The extremely high volume of vulnerabilities discovered in 2023 highlights threat actors’ persistent need to compromise trusted organizational mechanisms and infrastructure to gain a foothold in networks. Although inbox intrusions remain prevalent, the exploitation of edge infrastructure has demonstrably expanded compared to previously endpoint-focused attacks.

Given the prevalence of endpoint evasion techniques and the high proportion of tactics utilizing native programs, threat actors will likely progressively live off the land, even utilizing new techniques or vulnerabilities to do so, rather than relying on unidentified malicious programs which evade traditional detection.

5. The “as-a-Service” marketplace will contribute to an increase in multi-phase compromises.

With the increasing “as-a-Service” marketplaces, it is likely that organizations will face more multi-phase compromises, where one strain of malware is observed stealing information and that data is sold to additional threat actors or utilized for second and/or third-stage malware or ransomware.  

This trend builds on the concept of initial access brokers but utilizes basic browser scraping and data harvesting to make as much profit throughout the compromise process as possible. This will likely result in security teams observing multiple malicious tools and strains of malware during incident response and/or multi-functional malware, with attack cycles and kill chains morphing into less linear and more abstract chains of activity. This makes it more essential than ever for security teams to apply an anomaly approach to stay ahead of asymmetric threats.  

6. Generative AI will let attackers phish across language barriers.

Classic phishing scams play a numbers game, targeting as many inboxes as possible and hoping that some users take the bait, even if there are spelling and grammar errors in the email. Now, Generative AI has reduced the barrier for entry, so malicious actors do not have to speak English to produce a convincing phishing email.  

In 2024, we anticipate this to extend to other languages and regions. For example, many countries in Asia have not yet been greatly impacted by phishing. Yet Generative AI continues to develop, with improved data input yielding improved output. More phishing emails will start to be generated in various languages with increasing sophistication.    

7. AI regulation and data privacy rules will stifle AI adoption.

AI regulation, like the European Union’s AI Act and NIS2, is starting to be implemented around the world. As policies continue to come out about AI and data privacy, practical and pragmatic AI adoption becomes more complex.  

Businesses will likely have to take a second look at AI they are adopting into their tech stacks to consider what may happen if a tool is suddenly deprecated because it is no longer fit for purpose or loses the approvals in place. Many will also have to use completely different supply chain evaluations from their usual ones based on developing compliance registrars. This increased complication may make businesses reticent to adopt innovative AI solutions as legislation scrambles to keep up.  

Learn more about observed threat trends and future predictions in the 2023 End of Year Threat Report

続きを読む
著者について
Darktrace 脅威リサーチチーム

Good news for your business.
Bad news for the bad guys.

無償トライアルを開始

無償トライアルを開始

柔軟な導入
Cloud-based deployment.
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
フォームを送信する際に何らかの問題が発生しました。

デモを見る

柔軟な導入
仮想的にインストールすることも、ハードウェアでインストールすることも可能です。
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。