OTシステムの耐障害性を維持するために「エアギャップ」が十分でない理由

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
May 2023
11
May 2023
「エアギャップ」とは、2つのシステムを分離することでサイバーリスクを低減するセキュリティ対策のことです。しかし、エアギャップシステムには脆弱性があります。Darktraceはエアギャップシステムの可視性と耐障害性を強化します。

サマリー:

  • エアギャップはサイバーリスクを低減するが、現代のサイバー攻撃を防ぐことはできない
  • エアギャップされたネットワークを可視化することは、防御が完璧であると仮定して可視性がゼロになるよりも優れている
  • Darktrace は、エアギャップの完全性を損なうことなく、可視性とレジリエンスを提供することができる

「エアギャップ」とは何ですか?

情報技術(IT)は、エンドポイントやメールシステムからクラウドやハイブリッドインフラまで、デジタル情報のフローを流すために、外部と流動的に接続する必要があります。一方で、このような高度な接続性は、ITシステムをサイバー攻撃に対して特に脆弱なものにしています。  

物理的なプロセスの動作を制御するオペレーション技術(OT)は、想像以上にセンシティブなものです。OTは、業務の継続性を維持するために、高度な規則性に依存することが多く、わずかな障害でも、悲惨な結果につながる可能性があります。例えば、プログラマブルロジックコントローラー(PLC)に数秒の遅れが生じただけで、製造業の組立ラインは大きく混乱し、多大なコストをかけてダウンタイムを発生させる可能性があります。最悪の場合、OTの混乱は人の安全さえも脅かす可能性があります。 

エアギャップとは、データを手動で転送しない限り、OT環境に出入りできない「デジタル堀」(Digital Moat) のことです。

OTを導入している組織では、従来、このITとOTの対立を調整するために、両者を完全に分離することを試みてきました。基本的には、ITが得意とする通信やデータ転送を高速で行い、人々が互いにつながり、情報やアプリケーションに効率的にアクセスできるようにする、という考え方です。しかし同時に、ITとOTの間にエアギャップを設け、ITシステムに入り込んだサイバー脅威が、機密性が高くミッションクリティカルなOTシステムに横展開しないようにもします。このエアギャップは本質的に「デジタル堀」であり、手動で転送しない限り、データはOT環境に出入りすることができません。

エアギャップの限界

エアギャップのアプローチは理にかなっていますが、完璧とは言い難いものです。まず、完全にエアギャップされたシステムを持っていると思っている多くの組織が、実際には未知のIT/OTコンバージェンスポイント、つまりITとOTのネットワーク間の接続に気づいていないことがあるのです。 

今日、多くの企業がIT/OTの融合を意図的に取り入れ、しばしばインダストリー4.0と呼ばれるようなOTのデジタル変革のメリットを享受しています。例えば、産業用クラウド(またはICSaaS)、産業用IoT(IIoT)、その他のタイプのサイバーフィジカルシステムは、従来のOTの形態と比較して、効率の向上と機能の拡張を提供します。また、IT/OTの融合は、プロセスをよりシンプルで効率的にすることができるため、人的資本の不足を理由にIT/OTの融合を受け入れる組織もあります。

たとえ組織が真のエアギャップを有していたとしても(ITとOT環境を完全に可視化しなければ確認することはほぼ不可能)、攻撃者が「エアギャップを飛び越える」ための様々な方法が存在するのが実情です。したがって、ITとOTのエコシステムを一枚のガラスで完全に可視化することは、OTの安全確保を目指す組織にとって不可欠です。これは、ITとOTの融合点を明らかにし、そもそもエアギャップが存在することを検証するためだけでなく、攻撃がエアギャップをすり抜けるタイミングを確認するためでもあります。

図1:Darktrace/OTのIT環境とOT環境の統合ビュー

エアギャップの攻撃ベクトル

完璧なエアギャップであっても、以下を含む(ただし、これに限定されない)様々な異なる攻撃ベクトルに対して脆弱です: 

  • 物理的な侵害:敵は物理的なセキュリティをバイパスして、エアギャップされたネットワークデバイスに直接アクセスすることができます。物理的なアクセスは、最も効果的で明白な手法です。
  • 内部脅威:組織の一員であり、エアギャップされた安全なシステムにアクセスできる者が、意図的または非意図的にシステムを侵害すること
  • Supply chain compromise: A vendor with legitimate access to air-gapped systems unwittingly is compromised and brings infected devices into a network. 
  • 設定の誤り:アクセス制御やアクセス許可の設定ミスにより、攻撃者がネットワーク上の別のデバイスを経由してエアギャップシステムにアクセスすることができます
  • ソーシャルエンジニアリング(メディアドロップ):攻撃者が悪意のあるUSB/メディアドロップを成功させ、従業員がそのメディアをエアギャップシステム内で使用した場合、ネットワークが侵害される可能性があります。
  • その他の高度な戦術熱操作隠された表面振動LED超音波通信無線信号磁場など、ベングリオン大学の研究者が記録し、実証した高度な戦術の数々です。 

エアギャップ式システムの脆弱性

熱操作や磁場などの高度な技術・戦術・手順(TTP)の影響を受けやすいことはもちろんですが、空中に設置された環境に関連するより一般的な脆弱性として、パッチ未適用のシステムが気づかれない、ネットワークトラフィックを可視化できない、潜在的に悪意のある機器がネットワーク上に検知されない、ネットワーク内で取り外し可能メディアが物理的に接続されるといった要因が挙げられます。 

ひとたび攻撃がOTシステム内部に及べば、エアギャップの有無にかかわらず、その結果は悲惨なものになる可能性があります。しかし、エアギャップの存在が、インシデント発生時の対処や修復に要する時間にどのような影響を及ぼすかは、検討する価値があります。例えば、エアギャップの存在は、インシデント対応ベンダーがデジタルフォレンジックと対応のためにネットワークにアクセスする能力を著しく制限する可能性があります。 

エアギャップを飛び越えるクレムリンのハッカー達 

2018年、米国国土安全保障省(DHS)は、DragonflyとEnergetic Bearとして知られるロシアの脅威アクターが使用するTTPを記録したアラートを発表しました。さらなる報告では、これらのグループが「エアギャップを飛び越え」、さらに気になることに、好きなタイミングで送電網を無効化する能力を獲得したと主張したのです。 

これらの攻撃者は、スピアフィッシングメールや水飲み場攻撃を通じてベンダーやサプライヤーを標的とし、エネルギー部門やその他の重要なインフラ部門における機密性の高いエアギャップシステムへのアクセスを成功させました。これらのベンダーは、エアギャップシステムに合法的にアクセスすることができ、パッチの配布などのサポートサービスを提供する際に、意図せずこれらのシステムに感染させてしまったのです。

このインシデントは、たとえ機密性の高いOTシステムがデジタル的に完全に隔離されていたとしても、この強固なエアギャップでは、あらゆるシステムの最大の脆弱性の一つであるヒューマンエラーを完全に排除できないことを明らかにしました。電磁波を除去するためにファラデーケージを作るという極端な方法をとったとしても、ヒューマンエラーは依然として存在するのです。DragonflyとEnergetic Bearがサプライヤーを騙すために使った手口に見られるように、エアギャップされたシステムは、人間の脆弱性を突くソーシャルエンジニアリングに対して依然として脆弱なのです。 

理想的なのは、攻撃がサプライヤー、無線信号、電磁波のいずれによって引き起こされたかに関係なく、攻撃を識別できる技術です。自己学習型AIは、デバイス、人間、ネットワークの通常の「生活パターン」からの微妙な逸脱を発見することで、脅威の発生源や原因に関係なく、最も微妙な形の脅威的行動もその発生時に検知します。

エアギャップ環境向けのDarktrace/OT

エアギャップ環境向けのDarktrace/OT は、エアギャップシステムに直接配備される物理アプライアンスです。OT ネットワークからの生のデジタルデータを使用して、通常の生活パターンを理解します。Darktrace/OT は、第三者のサポートなしに AI が自己の生得的理解を構築するため、外部ソースからのデータまたは脅威フィードを一切必要としません。 

データ処理と分析はすべてDarktrace アプライアンス上でローカルに実行されるため、Darktrace がインターネットに接続されている必要はありません。その結果、Darktrace/OTは、エアギャップまたは高度にセグメント化されたネットワークに対して、その完全性を損なうことなく可視性と脅威の検知を提供します。人間や機械が最も微妙な形の脅威的行動を示した場合、このソリューションはリアルタイムでこれを明らかにすることができます。 

セキュリティ担当者は、Web ブラウザと暗号化された HTTPS を使用して、ネットワーク内のどこからでも、組織のネットワークポリシーに沿って、Darktrace アラートに安全にアクセスすることができます。

図2:Darktrace/OTが、SCADA ICSワークステーションへの異常な接続を検知

この展開で、 Darktraceは他のDarktrace/OT の展開で実証された、以下を含むすべての重要な洞察を提供します(ただし、これらに限定されません):

そもそもエアギャップがあるのかどうかを検証し、IT/OT環境の進化に合わせてエアギャップを維持しようとする組織は、Darktraceの自己学習型AIが提供する包括的な可視性と継続的な状況認識から大きな恩恵を受けることができます。また、ITとOTの融合のメリットを享受するためにエアギャップに穴を開けたいと考えている組織は、自己学習型AIによる警戒心が、すり抜けるサイバー攻撃を発見することに気づくでしょう。 

IIoTの導入や本格的なDMZの構築など、組織の目標が何であれ、「あなた」を学ぶことによって、Darktraceの自己学習型AIは、安全かつセキュアにその目標を達成できるように支援します。 

Learn more about Darktrace/OT

Daniel Simonds と Oakley Cox の貢献に感謝します。

NEWSLETTER

Like this and want more?

最新の業界ニュースやインサイトをお届けします。
You can unsubscribe at any time. Privacy Policy
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Max Lesser
Head of U.S. Policy Analysis and Engagement
この記事を共有
COre coverage

More in this series

該当する項目はありません。

Blog

Inside the SOC

PurpleFox in a Henhouse: How Darktrace Hunted Down a Persistent and Dynamic Rootkit

Default blog imageDefault blog image
27
Nov 2023

Versatile Malware: PurpleFox

As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.

One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.

The Evolution of PurpleFox

The Original Strain

First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.  

Subsequent Variants

Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.

The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.

Darktrace detection of PurpleFox

In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.

Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.

While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.

攻撃の概要

Figure 1: Timeline of PurpleFox malware kill chain.

Initial Scanning over SMB

On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.

This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

Figure 2: Cyber AI Analyst technical details summarizing the initial scanning activity seen with the internal network scan over port 445.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

Figure 3: The affected device’s Model Breach Event Log showing the initial scanning activity observed by Darktrace DETECT and the corresponding suggested RESPOND action.

特権昇格

The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.

Exploitation

Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.

Figure 4: PurpleFox remote service control activity captured by a Darktrace DETECT model breach.
Figure 5: The infected device’s Model Breach Event Log showing the anomalous service control activity being picked up by DETECT.

There are a few MSIEXEC flags to note:

  • /i : installs or configures a product
  • /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required

Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Figure 6: The infected device’s Model Breach Event Log showing the outbound activity corresponding to PurpleFox’s wormlike spread. This was caught by DETECT and the corresponding suggested RESPOND action.

Installation

On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.

The first connection was made with the URI ‘/test.png’.  It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.

The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.

Figure 7: Packet Capture from an affected customer device showing the initial HTTP requests to the payload server.
Figure 8: Packet Capture showing the HTTP requests to download the payloads.

The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Figure 9: PCAP from the affected customer device showing the Windows Installer user-agent associated with the .PNG file download.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.

By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.  

Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.

In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.

Figure 10: Cyber AI Analyst technical details summarizing the downloads of the PurpleFox payload.
Figure 11 (a): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.
Figure 11 (b): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.

If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.

結論

The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indictors of compromise (IoCs), necessitating a more sophisticated approach to threat detection.  

Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.  

By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.

Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore

付録

Darktraceによるモデル検知

  • Device / Increased External Connectivity
  • Device / Large Number of Connections to New Endpoints
  • Device / SMB Session Brute Force (Admin)
  • Compliance / External Windows Communications
  • Anomalous Connection / New or Uncommon Service Control
  • Compromise / Unusual SVCCTL Activity
  • Compromise / Rare Domain Pointing to Internal IP
  • Anomalous File / Masqueraded File Transfer

RESPOND Models

  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block

IoC一覧

IoC - Type - Description

/C558B828.Png - URI - URI for Purple Fox Rootkit [4]

5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)

190.4.210[.]242 - IP - Purple Fox C2 Servers

218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)

180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)

103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

MITRE ATT&CK マッピング

Tactic - Technique

Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002

Resource Development - Obtain Capabilities: Malware T1588.001

Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001

Initial Access - Drive-by Compromise T1189

Defense Evasion - Masquerading T1036

Credential Access - Brute Force T1110

Discovery - Network Service Discovery T1046

Command and Control - Proxy: External Proxy T1090.002

参考文献

  1. https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
  2. https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
  3. https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
  4. https://www.foregenix.com/blog/an-overview-on-purple-fox
  5. https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
続きを読む
著者について
Piramol Krishnan
Cyber Security Analyst

$70 Million in Cyber Security Funding for Electric Cooperatives & Utilities

Default blog imageDefault blog image
22
Nov 2023

What is the Bipartisan Infrastructure Deal?

The Bipartisan Infrastructure Law passed by congress in 2021 aimed to upgrade power and infrastructure to deliver clean, reliable energy across the US to achieve zero-emissions. To date, the largest investment in clean energy, the deal will fund new programs to support the development and deployment of clean energy technology.

Why is it relevant to electric municipalities?

Section 40124 of the Bipartisan Infrastructure Law allocates $250 million over a 5-year period to create the Rural and Municipal Utility Cybersecurity (RMUC) Program to help electric cooperative, municipal, and small investor-owned utilities protect against, detect, respond to, and recover from cybersecurity threats.1 This act illuminates the value behind a full life-cycle approach to cyber security. Thus, finding a cyber security solution that can provide all aspects of security in one integrated platform would enhance the overall security posture and ease many of the challenges that arise with adopting multiple point solutions.

On November 16, 2023 the Office of Cybersecurity, Energy Security, and Emergency Response (CESER) released the Advanced Cybersecurity Technology (ACT) for electric utilities offering a $70 million funding opportunity that aims to enhance the cybersecurity posture of electric cooperative, municipal, and small investor-owned utilities.

Funding Details

10 projects will be funded with application submissions due November 29, 2023, 5:00 pm ET with $200,000 each in cash prizes in the following areas:

  1. Direct support for eligible utilities to make investments in cybersecurity technologies, tools, training, and improvements in utility processes and procedures;
  2. Funding to strengthen the peer-to-peer and not-for-profit cybersecurity technical assistance ecosystem currently serving eligible electric utilities; and
  3. Increasing access to cybersecurity technical assistance and training for eligible utilities with limited cybersecurity resources. 2

To submit for this award visit: https://www.herox.com/ACT1Prize

How can electric municipalities utilize the funding?

While the adoption of hybrid working patterns increase cloud and SaaS usage, the number of industrial IoT devices also continues to rise. The result is decrease in visibility for security teams and new entry points for attackers. Particularly for energy and utility organizations.

Electric cooperatives seeking to enhance their cyber security posture can aim to invest in cyber security tools that provide the following:

Compliance support: Consider finding an OT security solution that maps out how its solutions and features help your organization comply with relevant compliance mandates such as NIST, ISA, FERC, TSA, HIPAA, CIS Controls, and more.

Anomaly based detection: Siloed security solutions also fail to detect attacks that span
the entire organization. Anomaly-based detection enhances an organization’s cyber security posture by proactively defending against potential attacks and maintaining a comprehensive view of their attack surface.

Integration capabilities: Implementation of several point solutions that complete individual tasks runs the risk of increasing workloads for operators and creates additional challenges with compliance, budgeting, and technical support. Look for cyber security tools that integrate with your existing technologies.

Passive and active asset tracking: Active Identification offers accurate enumeration, real time updates, vulnerability assessment, asset validation while Passive Identification eliminates the risk of operational disruption, minimizes risk, does not generate additional network traffic. It would be ideal to find a security solution that can do both.

Can secure both IT and OT in unison: Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, a mature security posture for critical infrastructure would include a single solution for both IT and OT. Separate solutions for IT and OT present challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. These independent solutions also significantly increase operator workload and materially diminish risk mitigation efforts.

Darktrace/OT for Electric Cooperatives and Utilities

For smaller teams with just one or two dedicated employees, Darktrace’s Cyber AI Analyst and Investigation features allow end users to spend less time in the platform as it compiles critical incidents into comprehensive actionable event reports. AI Analyst brings all the information into a centralized view with incident reporting in natural language summaries and can be generated for compliance reports specific to regulatory requirements.  

For larger teams, Darktrace alerts can be forwarded to 3rd party platforms such as a SIEM, where security team decision making is augmented. Additionally, executive reports and autonomous response reduce the alert fatigue generally associated with legacy tools. Most importantly, Darktrace’s unique understanding of normal allows security teams to detect zero-days and signatureless attacks regardless of the size of the organization and how alerts are consumed.

Key Benefits of Darktrace/OT

Figure 1: Darktrace/OT stops threats moving from IT to OT by providing a unified view across both systems

参考文献

1. https://www.whitehouse.gov/briefing-room/statements-releases/2021/11/06/fact-sheet-the-bipartisan-infrastructure-deal/

2. https://www.energy.gov/ceser/rural-and-municipal-utility-advanced-cybersecurity-grant-and-technical-assistance-rmuc

続きを読む
著者について
Jeff Cornelius
EVP, Cyber-Physical Security

Good news for your business.
Bad news for the bad guys.

無償トライアルを開始

無償トライアルを開始

柔軟な導入
Cloud-based deployment.
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
フォームを送信する際に何らかの問題が発生しました。

デモを見る

柔軟な導入
仮想的にインストールすることも、ハードウェアでインストールすることも可能です。
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。