OTシステムの耐障害性を維持するために「エアギャップ」が十分でない理由

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
May 2023
11
May 2023
「エアギャップ」とは、2つのシステムを分離することでサイバーリスクを低減するセキュリティ対策のことです。しかし、エアギャップシステムには脆弱性があります。Darktraceはエアギャップシステムの可視性と耐障害性を強化します。

サマリー:

  • エアギャップはサイバーリスクを低減するが、現代のサイバー攻撃を防ぐことはできない
  • エアギャップされたネットワークを可視化することは、防御が完璧であると仮定して可視性がゼロになるよりも優れている
  • Darktrace は、エアギャップの完全性を損なうことなく、可視性とレジリエンスを提供することができる

「エアギャップ」とは何ですか?

情報技術(IT)は、エンドポイントやメールシステムからクラウドやハイブリッドインフラまで、デジタル情報のフローを流すために、外部と流動的に接続する必要があります。一方で、このような高度な接続性は、ITシステムをサイバー攻撃に対して特に脆弱なものにしています。  

物理的なプロセスの動作を制御するオペレーション技術(OT)は、想像以上にセンシティブなものです。OTは、業務の継続性を維持するために、高度な規則性に依存することが多く、わずかな障害でも、悲惨な結果につながる可能性があります。例えば、プログラマブルロジックコントローラー(PLC)に数秒の遅れが生じただけで、製造業の組立ラインは大きく混乱し、多大なコストをかけてダウンタイムを発生させる可能性があります。最悪の場合、OTの混乱は人の安全さえも脅かす可能性があります。 

エアギャップとは、データを手動で転送しない限り、OT環境に出入りできない「デジタル堀」(Digital Moat) のことです。

OTを導入している組織では、従来、このITとOTの対立を調整するために、両者を完全に分離することを試みてきました。基本的には、ITが得意とする通信やデータ転送を高速で行い、人々が互いにつながり、情報やアプリケーションに効率的にアクセスできるようにする、という考え方です。しかし同時に、ITとOTの間にエアギャップを設け、ITシステムに入り込んだサイバー脅威が、機密性が高くミッションクリティカルなOTシステムに横展開しないようにもします。このエアギャップは本質的に「デジタル堀」であり、手動で転送しない限り、データはOT環境に出入りすることができません。

エアギャップの限界

エアギャップのアプローチは理にかなっていますが、完璧とは言い難いものです。まず、完全にエアギャップされたシステムを持っていると思っている多くの組織が、実際には未知のIT/OTコンバージェンスポイント、つまりITとOTのネットワーク間の接続に気づいていないことがあるのです。 

今日、多くの企業がIT/OTの融合を意図的に取り入れ、しばしばインダストリー4.0と呼ばれるようなOTのデジタル変革のメリットを享受しています。例えば、産業用クラウド(またはICSaaS)、産業用IoT(IIoT)、その他のタイプのサイバーフィジカルシステムは、従来のOTの形態と比較して、効率の向上と機能の拡張を提供します。また、IT/OTの融合は、プロセスをよりシンプルで効率的にすることができるため、人的資本の不足を理由にIT/OTの融合を受け入れる組織もあります。

たとえ組織が真のエアギャップを有していたとしても(ITとOT環境を完全に可視化しなければ確認することはほぼ不可能)、攻撃者が「エアギャップを飛び越える」ための様々な方法が存在するのが実情です。したがって、ITとOTのエコシステムを一枚のガラスで完全に可視化することは、OTの安全確保を目指す組織にとって不可欠です。これは、ITとOTの融合点を明らかにし、そもそもエアギャップが存在することを検証するためだけでなく、攻撃がエアギャップをすり抜けるタイミングを確認するためでもあります。

図1:Darktrace/OTのIT環境とOT環境の統合ビュー

エアギャップの攻撃ベクトル

完璧なエアギャップであっても、以下を含む(ただし、これに限定されない)様々な異なる攻撃ベクトルに対して脆弱です: 

  • 物理的な侵害:敵は物理的なセキュリティをバイパスして、エアギャップされたネットワークデバイスに直接アクセスすることができます。物理的なアクセスは、最も効果的で明白な手法です。
  • 内部脅威:組織の一員であり、エアギャップされた安全なシステムにアクセスできる者が、意図的または非意図的にシステムを侵害すること
  • Supply chain compromise: A vendor with legitimate access to air-gapped systems unwittingly is compromised and brings infected devices into a network. 
  • 設定の誤り:アクセス制御やアクセス許可の設定ミスにより、攻撃者がネットワーク上の別のデバイスを経由してエアギャップシステムにアクセスすることができます
  • ソーシャルエンジニアリング(メディアドロップ):攻撃者が悪意のあるUSB/メディアドロップを成功させ、従業員がそのメディアをエアギャップシステム内で使用した場合、ネットワークが侵害される可能性があります。
  • その他の高度な戦術熱操作隠された表面振動LED超音波通信無線信号磁場など、ベングリオン大学の研究者が記録し、実証した高度な戦術の数々です。 

エアギャップ式システムの脆弱性

熱操作や磁場などの高度な技術・戦術・手順(TTP)の影響を受けやすいことはもちろんですが、空中に設置された環境に関連するより一般的な脆弱性として、パッチ未適用のシステムが気づかれない、ネットワークトラフィックを可視化できない、潜在的に悪意のある機器がネットワーク上に検知されない、ネットワーク内で取り外し可能メディアが物理的に接続されるといった要因が挙げられます。 

ひとたび攻撃がOTシステム内部に及べば、エアギャップの有無にかかわらず、その結果は悲惨なものになる可能性があります。しかし、エアギャップの存在が、インシデント発生時の対処や修復に要する時間にどのような影響を及ぼすかは、検討する価値があります。例えば、エアギャップの存在は、インシデント対応ベンダーがデジタルフォレンジックと対応のためにネットワークにアクセスする能力を著しく制限する可能性があります。 

エアギャップを飛び越えるクレムリンのハッカー達 

2018年、米国国土安全保障省(DHS)は、DragonflyとEnergetic Bearとして知られるロシアの脅威アクターが使用するTTPを記録したアラートを発表しました。さらなる報告では、これらのグループが「エアギャップを飛び越え」、さらに気になることに、好きなタイミングで送電網を無効化する能力を獲得したと主張したのです。 

これらの攻撃者は、スピアフィッシングメールや水飲み場攻撃を通じてベンダーやサプライヤーを標的とし、エネルギー部門やその他の重要なインフラ部門における機密性の高いエアギャップシステムへのアクセスを成功させました。これらのベンダーは、エアギャップシステムに合法的にアクセスすることができ、パッチの配布などのサポートサービスを提供する際に、意図せずこれらのシステムに感染させてしまったのです。

このインシデントは、たとえ機密性の高いOTシステムがデジタル的に完全に隔離されていたとしても、この強固なエアギャップでは、あらゆるシステムの最大の脆弱性の一つであるヒューマンエラーを完全に排除できないことを明らかにしました。電磁波を除去するためにファラデーケージを作るという極端な方法をとったとしても、ヒューマンエラーは依然として存在するのです。DragonflyとEnergetic Bearがサプライヤーを騙すために使った手口に見られるように、エアギャップされたシステムは、人間の脆弱性を突くソーシャルエンジニアリングに対して依然として脆弱なのです。 

理想的なのは、攻撃がサプライヤー、無線信号、電磁波のいずれによって引き起こされたかに関係なく、攻撃を識別できる技術です。自己学習型AIは、デバイス、人間、ネットワークの通常の「生活パターン」からの微妙な逸脱を発見することで、脅威の発生源や原因に関係なく、最も微妙な形の脅威的行動もその発生時に検知します。

エアギャップ環境向けのDarktrace/OT

エアギャップ環境向けのDarktrace/OT は、エアギャップシステムに直接配備される物理アプライアンスです。OT ネットワークからの生のデジタルデータを使用して、通常の生活パターンを理解します。Darktrace/OT は、第三者のサポートなしに AI が自己の生得的理解を構築するため、外部ソースからのデータまたは脅威フィードを一切必要としません。 

データ処理と分析はすべてDarktrace アプライアンス上でローカルに実行されるため、Darktrace がインターネットに接続されている必要はありません。その結果、Darktrace/OTは、エアギャップまたは高度にセグメント化されたネットワークに対して、その完全性を損なうことなく可視性と脅威の検知を提供します。人間や機械が最も微妙な形の脅威的行動を示した場合、このソリューションはリアルタイムでこれを明らかにすることができます。 

セキュリティ担当者は、Web ブラウザと暗号化された HTTPS を使用して、ネットワーク内のどこからでも、組織のネットワークポリシーに沿って、Darktrace アラートに安全にアクセスすることができます。

図2:Darktrace/OTが、SCADA ICSワークステーションへの異常な接続を検知

この展開で、 Darktraceは他のDarktrace/OT の展開で実証された、以下を含むすべての重要な洞察を提供します(ただし、これらに限定されません):

そもそもエアギャップがあるのかどうかを検証し、IT/OT環境の進化に合わせてエアギャップを維持しようとする組織は、Darktraceの自己学習型AIが提供する包括的な可視性と継続的な状況認識から大きな恩恵を受けることができます。また、ITとOTの融合のメリットを享受するためにエアギャップに穴を開けたいと考えている組織は、自己学習型AIによる警戒心が、すり抜けるサイバー攻撃を発見することに気づくでしょう。 

IIoTの導入や本格的なDMZの構築など、組織の目標が何であれ、「あなた」を学ぶことによって、Darktraceの自己学習型AIは、安全かつセキュアにその目標を達成できるように支援します。 

Learn more about Darktrace/OT

Daniel Simonds と Oakley Cox の貢献に感謝します。

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Max Lesser
Head of U.S. Policy Analysis and Engagement
Book a 1-1 meeting with one of our experts
この記事を共有
COre coverage

More in this series

該当する項目はありません。

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について

Blog

Inside the SOC

Sliver C2: How Darktrace Provided a Sliver of Hope in the Face of an Emerging C2 Framework

Default blog imageDefault blog image
17
Apr 2024

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

結論

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

付録

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

侵害指標(IoC)一覧

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

参考文献

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

続きを読む
著者について
Natalia Sánchez Rocafort
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.