Blog

Inside the SOC

Akira Ransomware: How Darktrace Foiled Another Novel Ransomware Attack

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Sep 2023
13
Sep 2023

Threats Landscape: New Strains of Ransomware

In the face of a seemingly never-ending production line of novel ransomware strains, security teams across the threat landscape are continuing to see a myriad of new variants and groups targeting their networks. Naturally, new strains and threat groups present unique challenges to organizations. The use of previously unseen tactics, techniques, and procedures (TTPs) means that threat actors can often completely bypass traditional rule and signature-based security solutions, thus rendering an organization’s digital environment vulnerable to attack.

What is Akira Ransomware?

One such example of a novel ransomware family is Akira, which was first observed in the wild in March 2023. Much like many other strains, Akira is known to target corporate networks worldwide, encrypting sensitive files and demanding huge sums of money to retrieve the data and stop it from being posted online [1].

In late May 2023, Darktrace observed multiple instances of Akira ransomware affecting networks across its customer base. Thanks to its anomaly-based approach to threat detection, Darktrace DETECT™ successfully identified the novel ransomware attacks and provided full visibility over the cyber kill chain, from the initial compromise to the eventual file encryptions and ransom notes. In cases where Darktrace RESPOND™ was enabled in autonomous response mode, these attacks were mitigated the early stages of the attack, thus minimizing any disruption or damage to customer networks.

Initial access and privilege escalation

The Akira ransomware group typically uses spear-phishing campaigns containing malicious downloads or links as their primary initial access vector; however, they have also been known to use Remote Desktop Protocol (RDP) brute-force attacks to access target networks [2].

While Darktrace did observe the early access activities that are detailed below, it is very likely that the actual initial intrusion happened prior to this, through targeted phishing attacks that fell outside of Darktrace’s purview.  The first indicators of compromise (IoCs) that Darktrace observed on customer networks affected by Darktrace were typically unusual RDP sessions, and the use of compromised administrative credentials.

On one Darktrace customer’s network (customer A), Darktrace DETECT identified a highly privileged credential being used for the first time on an internal server on May 21, 2023. Around a week later, this server was observed establishing RDP connections with multiple internal destination devices via port 3389. Further investigation carried out by the customer revealed that this credential had indeed been compromised. On May 30, Darktrace detected another device scanning internal devices and repeatedly failing to authenticate via Kerberos.

As the customer had integrated Darktrace with Microsoft Defender, their security team received additional cyber threat intelligence from Microsoft which, coupled with the anomaly alerts provided by Darktrace, helped to further contextualize these anomalous events. One specific detail gleaned from this integration was that the anomalous scanning activity and failed authentication attempts were carried out using the compromised administrative credentials mentioned earlier.

By integrating Microsoft Defender with Darktrace, customers can efficiently close security gaps across their digital infrastructure. While Darktrace understands customer environments and provides valuable network-level insights, by integrating with Microsoft Defender, customers can further enrich these insights with endpoint-specific information and activity.

In another customer’s network (customer B), Darktrace detected a device, later observed writing a ransom note, receiving an unusual RDP connection from another internal device. The RDP cookie used during this activity was an administrative RDP cookie that appeared to have been compromised. This device was also observed making multiple connections to the domain, api.playanext[.]com, and using the user agent , AnyDesk/7.1.11, indicating the use of the AnyDesk remote desktop service.

Although this external domain does not appear directly related to Akira ransomware, open-source intelligence (OSINT) found associations with multiple malicious files, and it appeared to be associated with the AnyDesk user agent, AnyDesk/6.0.1 [3]. The connections to this endpoint likely represented the malicious use of AnyDesk to remotely control the customer’s device, rather than Akira command-and-control (C2) infrastructure or payloads. Alternatively, it could be indicative of a spoofing attempt in which the threat actor is attempting to masquerade as legitimate remote desktop service to remain undetected by security tools.

Around the same time, Darktrace observed many devices on customer B’s network making anomalous internal RDP connections and authenticating via Kerberos, NTLM, or SMB using the same administrative credential. These devices were later confirmed to be affected by Akira ransomware.

Figure 1 shows how Darktrace detected one of those internal devices failing to login via SMB multiple times with a certain credential (indication of a possible SMB/NTLM brute force), before successfully accessing other internal devices via SMB, NTLM and RDP using the likely compromised administrative credential mentioned earlier.

Figure 1: Model Breach Event Log indicating unusual SMB, NTLM and RDP activity with different credentials detected which led to the Darktrace DETECT model breaches, "Unusual Admin RDP Session” and “Successful Admin Brute-Force Activity”.

Darktrace DETECT models observed for initial access and privilege escalation:

  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Connection / Unusual Admin RDP Session
  • New Admin Credentials on Server
  • Possible SMB/NTLM Brute Force Indicator
  • Unusual Activity / Successful Admin Brute-Force Activity

Internal Reconnaissance and Lateral Movement

The next step Darktrace observed during Akira ransomware attacks across the customer was internal reconnaissance and lateral movement.

In another customer’s environment (customer C), after authenticating via NTLM using a compromised credential, a domain controller was observed accessing a large amount of SMB shares it had never previously accessed. Darktrace DETECT understood that this SMB activity represented a deviation in the device’s expected behavior and recognized that it could be indicative of SMB enumeration. Darktrace observed the device making at least 196 connections to 34 unique internal IPs via port 445. SMB actions read, write, and delete were observed during those connections. This domain controller was also one of many devices on the customer’s network that was received incoming connections from an external endpoint over port 3389 using the RDP protocol, indicating that the devices were likely being remotely controlled from outside the network. While there were no direct OSINT links with this endpoint and Akira ransomware, the domain controller in question was later confirmed to be compromised and played a key role in this phase of the attack.

Moreover, this represents the second IoC that Darktrace observed that had no obvious connection to Akira, likely indicating that Akira actors are establishing entirely new infrastructure to carry out their attacks, or even utilizing newly compromised legitimate infrastructure. As Darktrace DETECT adopts an anomaly-based approach to threat detection, it can recognize suspicious activity indicative of an emerging ransomware attack based on its unusualness, rather than having to rely on previously observed IoCs and lists of ‘known-bads’.

Darktrace further observed a flurry of activity related to lateral movement around this time, primarily via SMB writes of suspicious files to other internal destinations. One particular device on customer C’s network was detected transferring multiple executable (.exe) and script files to other internal devices via SMB.

Darktrace recognized that these transfers represented a deviation from the device’s normal SMB activity and may have indicated threat actors were attempting to compromise additional devices via the transfer of malicious software.

Figure 2: Advanced Search results showing 20 files associated with suspicious SMB write activity, amongst them executable files and dynamic link libraries (DLLs).

Darktrace DETECT models observed for internal reconnaissance and lateral movement:

  • Device / RDP Scan
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Possible Share Enumeration Activity
  • Scanning of Multiple Devices (Cyber AI Analyst Incident)
  • Device / Possible SMB/NTLM Reconnaissance
  • Compliance / Incoming Remote Desktop
  • Compliance / Outgoing NTLM Request from DC
  • Unusual Activity / Internal Data Transfer
  • Security Integration / Lateral Movement and Integration Detection
  • Device / Anomalous SMB Followed By Multiple Model Breaches

Ransomware deployment

In the final phase of Akira ransomware attacks detected on Darktrace customer networks, Darktrace DETECT identified the file extension “.akira” being added after encryption to a variety of files on the affected network shares, as well as a ransom note titled “akira_readme.txt” being dropped on affected devices.

On customer A’s network, after nearly 9,000 login failures and 2,000 internal connection attempts indicative of scanning activity, one device was detected transferring suspicious files over SMB to other internal devices. The device was then observed connecting to another internal device via SMB and continuing suspicious file activity, such as appending files on network shares with the “.akira” extension, and performing suspicious writes to SMB shares on other internal devices.

Darktrace’s autonomous threat investigator, Cyber AI Analyst™, was able to analyze the multiple events related to this encryption activity and collate them into one AI Analyst incident, presenting a detailed and comprehensive summary of the entire incident within 10 minutes of Darktrace’s initial detection. Rather than simply viewing individual breaches as standalone activity, AI Analyst can identify the individual steps of an ongoing attack to provide complete visibility over emerging compromises and their kill chains. Not only does this bolster the network’s defenses, but the autonomous investigations carried out by AI Analyst also help to save the security team’s time and resources in triaging and monitoring ongoing incidents.

Figure 3: Darktrace Cyber AI Analyst incident correlated multiple model breaches together to show Akira ransomware encryption activity.

In addition to analyzing and compiling Darktrace DETECT model breaches, AI Analyst also leveraged the host-level insights provided by Microsoft Defender to enrich its investigation into the encryption event. By using the Security Integration model breaches, AI Analyst can retrieve timestamp and device details from a Defender alert and further investigate any unusual activity surrounding the alert to present a full picture of the suspicious activity.

In customer B’s environment, following the unusual RDP sessions and rare external connections using the AnyDesk user agent, an affected device was later observed writing around 2,000 files named "akira_readme.txt" to multiple internal SMB shares. This represented the malicious actor dropping ransom notes, containing the demands and extortion attempts of the actors.

Figure 4: Model Breach Event Log indicating the ransom note detected on May 12, 2023, which led to the Darktrace DETECT model breach, Anomalous Server Activity / Write to Network Accessible WebRoot.
Figure 5: Packet Capture (PCAP) demonstrating the Akira ransom note captured from the connection details seen in Figure 4.

As a result of this ongoing activity, an Enhanced Monitoring model breach, a high-fidelity DETECT model type that detects activities that are more likely to be indicative of compromise, was escalated to Darktrace’s Security Operations Center (SOC) who, in turn were able to further investigate and triage this ransomware activity. Customers who have subscribed to Darktrace’s Proactive Threat Notification (PTN) service would receive an alert from the SOC team, advising urgent follow up action.

Darktrace DETECT models observed during ransomware deployment:

  • Security Integration / Integration Ransomware Incident
  • Security Integration / High Severity Integration Detection
  • Security Integration / Integration Ransomware Detected
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity (Proactive Threat Notification Alerted by the Darktrace SOC)
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous File / Internal / Unusual SMB Script Write
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Anomalous Server Activity /Write to Network Accessible WebRoot
  • Anomalous Server Activity /Write to Network Accessible WebRoot

Darktrace RESPOND

When Darktrace is configured in autonomous response mode, RESPOND is able to follow up successful threat identifications by DETECT with instant autonomous actions that stop malicious actors in their tracks and prevent them from achieving their end goals.

In the examples of Darktrace customers affected by Akira outlined above, only customer A had RESPOND enabled in autonomous response mode during their ransomware attack. The autonomous response capability of Darktrace RESPOND helped the customer to minimize disruption to the business through multiple targeted actions on devices affected by ransomware.

One action carried out by RESPOND was to block all on-going traffic from affected devices. In doing so, Darktrace effectively shuts down communications between devices affected by Akira and the malicious infrastructure used by threat actors, preventing the spread of data on the client network or threat actor payloads.

Another crucial RESPOND action applied on this customer’s network was combat Akira was to “Enforce a Pattern of Life” on affected devices. This action is designed to prevent devices from performing any activity that would constitute a deviation from their expected behavior, while allowing them to continue their ‘usual’ business operations without causing any disruption.

While the initial intrusion of the attack on customer A’s network likely fell outside of the scope of Darktrace’s visibility, Darktrace RESPOND was able to minimize the disruption caused by Akira, containing the ransomware and allowing the customer to further investigate and remediate.

Darktrace RESPOND model breaches:

  • Antigena / Network / External Threat / Antigena Ransomware Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Block
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network /Insider Threat /Antigena SMB Enumeration Block

結論

Novel ransomware strains like Akira present a significant challenge to security teams across the globe due to the constant evolution of attack methods and tactics, making it huge a challenge for security teams to stay up to date with the most current threat intelligence.  

Therefore, it is paramount for organizations to adopt a technology designed around an intelligent decision maker able to identify unusual activity that could be indicative of a ransomware attack without depending solely on rules, signatures, or statistic lists of malicious IoCs.

Darktrace DETECT identified Akira ransomware at every stage of the attack’s kill chain on multiple customer networks, even when threat actors were utilizing seemingly legitimate services (or spoofed versions of them) to carry out malicious activity. While this may have gone unnoticed by traditional security tools, Darktrace’s anomaly-based detection enabled it to recognize malicious activity for what it was. When enabled in autonomous response mode, Darktrace RESPOND is able to follow up initial detections with machine-speed preventative actions to stop the spread of ransomware and minimize the damage caused to customer networks.  

There is no silver bullet to defend against novel cyber-attacks, however Darktrace’s anomaly-based approach to threat detection and autonomous response capabilities are uniquely placed to detect and respond to cyber disruption without latency.

Credit to: Manoel Kadja, Cyber Analyst, Nahisha Nobregas, SOC Analyst.

付録

IOC - Type - Description/Confidence

202.175.136[.]197 - External destination IP -Incoming RDP Connection

api.playanext[.]com - External hostname - Possible RDP Host

.akira - File Extension - Akira Ransomware Extension

akira_readme.txt - Text File - Akira Ransom Note

AnyDesk/7.1.11 - User Agent -AnyDesk User Agent

MITRE ATT&CK マッピング

Tactic & Technique

探索

T1083 - File and Directory Discovery

T1046 - Network Service Scanning

T1135 - Network Share Discovery

RECONNAISSANCE

T1595.002 - Vulnerability Scanning

CREDENTIAL ACCESS, COLLECTION

T1557.001 - LLMNR/NBT-NS Poisoning and SMB Relay

DEFENSE EVASION, LATERAL MOVEMENT

T1550.002 - Pass the Hash

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078 - Valid Accounts

DEFENSE EVASION

T1006 - Direct Volume Access

LATERAL MOVEMENT

T1563.002 - RDP Hijacking

T1021.001 - Remote Desktop Protocol

T1080 - Taint Shared Content

T1021.002 - SMB/Windows Admin Shares

INITIAL ACCESS

T1190 - Exploit Public-Facing Application

T1199 - Trusted Relationship

PERSISTENCE, INITIAL ACCESS

T1133 - External Remote Services

PERSISTENCE

T1505.003 - Web Shell

IMPACT

T1486 - Data Encrypted for Impact

参考文献

[1] https://www.bleepingcomputer.com/news/security/meet-akira-a-new-ransomware-operation-targeting-the-enterprise/

[2] https://www.civilsdaily.com/news/cert-in-warns-against-akira-ransomware/#:~:text=Spread%20Methods%3A%20Akira%20ransomware%20is,Desktop%20connections%20to%20infiltrate%20systems

[3] https://hybrid-analysis.com/sample/0ee9baef94c80647eed30fa463447f000ec1f50a49eecfb71df277a2ca1fe4db?environmentId=100

NEWSLETTER

Like this and want more?

最新の業界ニュースやインサイトをお届けします。
You can unsubscribe at any time. Privacy Policy
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Manoel Kadja
Cyber Analyst
この記事を共有
USE CASES
該当する項目はありません。
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

Inside the SOC

ViperSoftX: How Darktrace Uncovered A Venomous Intrusion

Default blog imageDefault blog image
03
Oct 2023

Fighting Info-Stealing Malware

The escalating threat posed by information-stealing malware designed to harvest and steal the sensitive data of individuals and organizations alike has become a paramount concern for security teams across the threat landscape. In direct response to security teams improving their threat detection and prevention capabilities, threat actors are forced to continually adapt and advance their techniques, striving for greater sophistication to ensure they can achieve the malicious goals.

What is ViperSoftX?

ViperSoftX is an information stealer and Remote Access Trojan (RAT) malware known to steal privileged information such as cryptocurrency wallet addresses and password information stored in browsers and password managers. It is commonly distributed via the download of cracked software from multiple sources such as suspicious domains, torrent downloads, and key generators (keygens) from third-party sites.

ViperSoftX was first observed in the wild in 2020 [1] but more recently, new strains were identified in 2022 and 2023 utilizing more sophisticated detection evasion techniques, making it more difficult for security teams to identify and analyze. This includes using more advanced encryption methods alongside monthly changes to command-and-control servers (C2) [2], using dynamic-link library (DLL) sideloading for execution techiques, and subsequently loading a malicious browser extension upon infection which works as an independent info-stealer named VenomSoftX [3].

Between February and June 2023, Darktrace detected activity related to the VipersoftX and VenomSoftX information stealers on the networks of more than 100 customers across its fleet. Darktrace DETECT™ was able to successfully identify the anomalous network activity surrounding these emerging information stealer infections and bring them to the attention of the customers, while Darktrace RESPOND™, when enabled in autonomous response mode, was able to quickly intervene and shut down malicious downloads and data exfiltration attempts.

ViperSoftX Attack & Darktrace Coverage

In cases of ViperSoftX information stealer activity observed by Darktrace, the initial infection was caused through the download of malicious files from multimedia sites, endpoints of cracked software like Adobe Illustrator, and torrent sites. Endpoint users typically unknowingly download the malware from these endpoints with a sideloaded DLL, posing as legitimate software executables.

Darktrace detected multiple downloads from such multimedia sites and endpoints related to cracked software and BitTorrent, which were likely representative of the initial source of ViperSoftX infection. Darktrace DETECT models such as ‘Anomalous File / Anomalous Octet Stream (No User Agent)’ breached in response to this activity and were brought to the immediate attention of customer security teams. In instances where Darktrace RESPOND was configured in autonomous response mode, Darktrace was able to enforce a pattern of life on offending devices, preventing them from downloading malicious files.  This ensures that devices are limited to conducting only their pre-established expected activit, minimizing disruption to the business whilst targetedly mitigating suspicious file downloads.

The downloads are then extracted, decrypted and begin to run on the device. The now compromised device will then proceed to make external connections to C2 servers to retrieve secondary PowerShell executable. Darktrace identified that infected devices using PowerShell user agents whilst making HTTP GET requests to domain generation algorithm (DGA) ViperSoftX domains represented new, and therefore unusual, activity in a large number of cases.

For example, Darktrace detected one customer device making an HTTP GET request to the endpoint ‘chatgigi2[.]com’, using the PowerShell user agent ‘Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.19041.2364’. This new activity triggered a number of DETECT models, including ‘Anomalous Connection / PowerShell to Rare External’ and ‘Device / New PowerShell User Agent’. Repeated connections to these endpoints also triggered C2 beaconing models including:  

  • Compromise / Agent Beacon (Short Period)
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / SSL or HTTP Beacon

Although a large number of different DGA domains were detected, commonalities in URI formats were seen across affected customers which matched formats previously identified as ViperSoftX C2 communication by open-source intelligence (OSINT), and in other Darktrace investigations.  

URI paths for example, were always of the format /api/, /api/v1/, /v2/, or /v3/, appearing to detail version number, as can be seen in Figure 1.

Figure 1: A Packet Capture (PCAP) taken from Darktrace showing a connection made to a ViperSoftX C2 endpoint containing versioning information, consistent with ViperSoftX pattern of communication.  

Before the secondary PowerShell executables are loaded, ViperSoftX takes a digital fingerprint of the infected machine to gather its configuration details, and exfiltrates them to the C2 server. These include the computer name, username, Operating System (OS), and ensures there are no anti-virus or montoring tools on the device. If no security tool are detected, ViperSoftX then downloads, decrypts and executes the PowerShell file.

Following the GET requests Darktrace observed numerous devices performing HTTP POST requests and beaconing connections to ViperSoftX endpoints with varying globally unique identifiers (GUIDs) within the URIs. These connections represented the exfiltration of device configuration details, such as “anti-virus detected”, “app used”, and “device name”. As seen on another customer’s deployment, this caused the model ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’ to breach, which was also detected by Cyber AI Analyst as seen in Figure 2.

Figure 2: Cyber AI Analyst’s detection of HTTP POSTs being made to apibiling[.]com, a ViperSoftX C2 endpoint.

The malicious PowerShell download then crawls the infected device’s systems and directories looking for any cryptocurrency wallet information and password managers, and exfiltrates harvest data to the C2 infrastructure. The C2 server then provides further browser extensions to Chromium browsers to be downloaded and act as a separate stand-alone information stealer, also known as VenomSoftX.

Similar to the initial download of ViperSoftX, these malicious extensions are disguised as legitimate browser extensions to evade the detection of security teams. VenomSoft X, in turn, searches through and attempts to gather sensitive data from password managers and crypto wallets stored in user browsers. Using this information, VenomSoftX is able to redirect crypocurrency transactions by intercepting and manipulating API requests between the sender and the intended recipient, directing the cryptocurrency to the attacker instead [3].

Following investigation into VipersoftX activity across the customer base, Darktrace notified all affected customers and opened Ask the Expert (ATE) tickets through which customer’s could directly contact the analyst team for support and guidance in the face on the information stealer infection.

攻撃は他のセキュリティスタックをどのようにすり抜けたか?

As previously mentioned, both the initial download of ViperSoftX and the subsequent download of the VenomX browser extension are disguised as legitimate software or browser downloads. This is a common technique employed by threat actors to infect target devices with malicious software, while going unnoticed by security teams traditional security measures. Furthermore, by masquerading as a legitimate piece of software endpoint users are more likely to trust and therefore download the malware, increasing the likelihood of threat actor’s successfully carrying out their objectives. Additionally, post-infection analysis of shellcode, the executable code used as the payload, is made significantly more difficult by VenomSoftX’s use of bytemapping. Bytemapping prevents the encryption of shellcodes without its corresponding byte map, meaning that the payloads cannot easily be decrypted and analysed by security researchers. [3]

ViperSoftX also takes numerous attempts to prevent their C2 infrastructure from being identified by blocking access to it on browsers, and using multiple DGA domains, thus renderring defunct traditional security measures that rely on threat intelligence and static lists of indicators of compromise (IoCs).

Fortunately for Darktrace customers, Darktrace’s anomaly-based approach to threat detection means that it was able to detect and alert customers to this suspicious activity that may have gone unnoticed by other security tools.

Insights/Conclusion

Faced with the challenge of increasingly competent and capable security teams, malicious actors are having to adopt more sophisticated techniques to successfully compromise target systems and achieve their nefarious goals.

ViperSoftX information stealer makes use of numerous tactics, techniques and procedures (TTPs) designed to fly under the radar and carry out their objectives without being detected. ViperSoftX does not rely on just one information stealing malware, but two with the subsequent injection of the VenomSoftX browser extension, adding an additional layer of sophistication to the informational stealing operation and increasing the potential yield of sensitive data. Furthermore, the use of evasion techniques like disguising malicious file downloads as legitimate software and frequently changing DGA domains means that ViperSoftX is well equipped to infiltrate target systems and exfiltrate confidential information without being detected.

However, the anomaly-based detection capabilities of Darktrace DETECT allows it to identify subtle changes in a device’s behavior, that could be indicative of an emerging compromise, and bring it to the customer’s security team. Darktrace RESPOND is then autonomously able to take action against suspicious activity and shut it down without latency, minimizing disruption to the business and preventing potentially significant financial losses.

Credit to: Zoe Tilsiter, Senior Cyber Analyst, Nathan Lorenzo, Cyber Analyst.

付録

参考文献

[1] https://www.fortinet.com/blog/threat-research/vipersoftx-new-javascript-threat

[2] https://www.trendmicro.com/en_us/research/23/d/vipersoftx-updates-encryption-steals-data.html

[3] https://decoded.avast.io/janrubin/vipersoftx-hiding-in-system-logs-and-spreading-venomsoftx/

Darktrace DETECT Model Detections

·       Anomalous File / Anomalous Octet Stream (No User Agent)

·       Anomalous Connection / PowerShell to Rare External

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Connection / Lots of New Connections

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·       Anomalous Server Activity / Outgoing from Server

·       Compromise / Large DNS Volume for Suspicious Domain

·       Compromise / Quick and Regular Windows HTTP Beaconing

·       Compromise / Beacon for 4 Days

·       Compromise / Suspicious Beaconing Behaviour

·       Compromise / Large Number of Suspicious Failed Connections

·       Compromise / Large Number of Suspicious Successful Connections

·       Compromise / POST and Beacon to Rare External

·       Compromise / DGA Beacon

·       Compromise / Agent Beacon (Long Period)

·       Compromise / Agent Beacon (Medium Period)

·       Compromise / Agent Beacon (Short Period)

·       Compromise / Fast Beaconing to DGA

·       Compromise / SSL or HTTP Beacon

·       Compromise / Slow Beaconing Activity To External Rare

·       Compromise / Beaconing Activity To External Rare

·       Compromise / Excessive Posts to Root

·       Compromise / Connections with Suspicious DNS

·       Compromise / HTTP Beaconing to Rare Destination

·       Compromise / High Volume of Connections with Beacon Score

·       Compromise / Sustained SSL or HTTP Increase

·       Device / New PowerShell User Agent

·       Device / New User Agent and New IP

Darktrace RESPOND Model Detections

·       Antigena / Network / External Threat / Antigena Suspicious File Block

·       Antigena / Network / External Threat / Antigena File then New Outbound Block

·       Antigena / Network / External Threat / Antigena Watched Domain Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

·       Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

·       Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

·       Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

IoC一覧

Indicator - Type - Description

ahoravideo-blog[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-blog[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-cdn[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-chat[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-chat[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-endpoint[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

apibilng[.]com - Hostname - ViperSoftX C2 endpoint

arrowlchat[.]com - Hostname - ViperSoftX C2 endpoint

bideo-blog[.]com - Hostname - ViperSoftX C2 endpoint

bideo-blog[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-cdn[.]com - Hostname - ViperSoftX C2 endpoint

bideo-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-chat[.]com - Hostname - ViperSoftX C2 endpoint

bideo-chat[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-endpoint[.]com - Hostname - ViperSoftX C2 endpoint

bideo-endpoint[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

chatgigi2[.]com - Hostname - ViperSoftX C2 endpoint

counter[.]wmail-service[.]com - Hostname - ViperSoftX C2 endpoint

fairu-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

fairu-chat[.]xyz - Hostname - ViperSoftX C2 endpoint

fairu-endpoint[.]com - Hostname - ViperSoftX C2 endpoint

fairu-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

fairu-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-blog[.]com - Hostname - ViperSoftX C2 endpoint

privatproxy-blog[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-cdn[.]com - Hostname - ViperSoftX C2 endpoint

privatproxy-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-endpoint[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

privatproxy-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

static-cdn-349[.]net - Hostname - ViperSoftX C2 endpoint

wmail-blog[.]com - Hostname - ViperSoftX C2 endpoint

wmail-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

wmail-chat[.]com - Hostname - ViperSoftX C2 endpoint

wmail-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

wmail-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.19041.2364 - User Agent -PowerShell User Agent

MITRE ATT&CK マッピング

Tactic - Technique - Notes

Command and Control - T1568.002 Dynamic Resolution: Domain Generation Algorithms

Command and Control - T1321 Data Encoding

Credential Access - T1555.005 Credentials from Password Stores: Password Managers

Defense Evasion - T1027 Obfuscated Files or Information

Execution - T1059.001 Command and Scripting Interpreter: PowerShell

Execution - T1204 User Execution T1204.002 Malicious File

Persistence - T1176 Browser Extensions - VenomSoftX specific

Persistence, Privilege Escalation, Defense Evasion - T1574.002 Hijack Execution Flow: DLL Side-Loading

続きを読む
著者について
Zoe Tilsiter
Cyber Analyst

Blog

Inside the SOC

Protecting Prospects: How Darktrace Detected an Account Hijack Within Days of Deployment

Default blog imageDefault blog image
28
Sep 2023

Cloud Migration Expanding the Attack Surface

Cloud migration is here to stay – accelerated by pandemic lockdowns, there has been an ongoing increase in the use of public cloud services, and Gartner has forecasted worldwide public cloud spending to grow around 20%, or by almost USD 600 billion [1], in 2023. With more and more organizations utilizing cloud services and moving their operations to the cloud, there has also been a corresponding shift in malicious activity targeting cloud-based software and services, including Microsoft 365, a prominent and oft-used Software-as-a-Service (SaaS).

With the adoption and implementation of more SaaS products, the overall attack surface of an organization increases – this gives malicious actors additional opportunities to exploit and compromise a network, necessitating proper controls to be in place. This increased attack surface can leave organization’s open to cyber risks like cloud misconfigurations, supply chain attacks and zero-day vulnerabilities [2]. In order to achieve full visibility over cloud activity and prevent SaaS compromise, it is paramount for security teams to deploy sophisticated security measures that are able to learn an organization’s SaaS environment and detect suspicious activity at the earliest stage.

Darktrace Immediately Detects Hijacked Account

In May 2023, Darktrace observed a chain of suspicious SaaS activity on the network of a customer who was about to begin their trial of Darktrace/Cloud™ and Darktrace/Email™. Despite being deployed on the network for less than a week, Darktrace DETECT™ recognized that the legitimate SaaS account, belonging to an executive at the organization, had been hijacked. Darktrace/Email was able to provide full visibility over inbound and outbound mail and identified that the compromised account was subsequently used to launch an internal spear-phishing campaign.

If Darktrace RESPOND™ were enabled in autonomous response mode at the time of this compromise, it would have been able to take swift preventative action to disrupt the account compromise and prevent the ensuing phishing attack.

Account Hijack Attack Overview

Unusual External Sources for SaaS Credentials

On May 9, 2023, Darktrace DETECT/Cloud detected the first in a series of anomalous activities performed by a Microsoft 365 user account that was indicative of compromise, namely a failed login from an external IP address located in Virginia.

Figure 1: The failed login notice, as seen in Darktrace DETECT/Cloud. The notice includes additional context about the failed login attempt to the SaaS account.

Just a few minutes later, Darktrace observed the same user credential being used to successfully login from the same unusual IP address, with multi-factor authentication (MFA) requirements satisfied.

Figure 2: The “Unusual External Source for SaaS Credential Use” model breach summary, showing the successful login to the SaaS user account (with MFA), from the rare external IP address.

A few hours after this, the user credential was once again used to login from a different city in the state of Virginia, with MFA requirements successfully met again. Around the time of this activity, the SaaS user account was also observed previewing various business-related files hosted on Microsoft SharePoint, behavior that, taken in isolation, did not appear to be out of the ordinary and could have represented legitimate activity.

The following day, May 10, however, there were additional login attempts observed from two different states within the US, namely Texas and Florida. Darktrace understood that this activity was extremely suspicious, as it was highly improbable that the legitimate user would be able to travel over 2,500 miles in such a short period of time. Both login attempts were successful and passed MFA requirements, suggesting that the malicious actor was employing techniques to bypass MFA. Such MFA bypass techniques could include inserting malicious infrastructure between the user and the application and intercepting user credentials and tokens, or by compromising browser cookies to bypass authentication controls [3]. There have also been high-profile cases in the recent years of legitimate users mistakenly (and perhaps even instinctively) accepting MFA prompts on their token or mobile device, believing it to be a legitimate process despite not having performed the login themselves.

New Email Rule

On the evening of May 10, following the successful logins from multiple US states, Darktrace observed the Microsoft 365 user creating a new inbox rule, named “.’, in Microsoft Outlook from an IP located in Florida. Threat actors are often observed naming new email rules with single characters, likely to evade detection, but also for the sake of expediency so as to not expend any additional time creating meaningful labels.

In this case the newly created email rules included several suspicious properties, including ‘AlwaysDeleteOutlookRulesBlob’, ‘StopProcessingRules’ and “MoveToFolder”.

Firstly, ‘AlwaysDeleteOutlookRulesBlob’ suppresses or hides warning messages that typically appear if modifications to email rules are made [4]. In this case, it is likely the malicious actor was attempting to implement this property to obfuscate the creation of new email rules.

The ‘StopProcessingRules’ rule meant that any subsequent email rules created by the legitimate user would be overridden by the email rule created by the malicious actor [5]. Finally, the implementation of “MoveToFolder” would allow the malicious actor to automatically move all outgoing emails from the “Sent” folder to the “Deleted Items” folder, for example, further obfuscating their malicious activities [6]. The utilization of these email rule properties is frequently observed during account hijackings as it allows attackers to delete and/or forward key emails, delete evidence of exploitation and launch phishing campaigns [7].

In this incident, the new email rule would likely have enabled the malicious actor to evade the detection of traditional security measures and achieve greater persistence using the Microsoft 365 account.

Figure 3: Screenshot of the “New Email Rule” model breach. The Office365 properties associated with the newly modified Microsoft Outlook inbox rule, “.”, are highlighted in red.

Account Update

A few hours after the creation of the new email rule, Darktrace observed the threat actor successfully changing the Microsoft 365 user’s account password, this time from a new IP address in Texas. As a result of this action, the attacker would have locked out the legitimate user, effectively gaining full access over the SaaS account.

Figure 4: The model breach event log showing the user password and token change updates performed by the compromised SaaS account.

Phishing Emails

The compromised SaaS account was then observed sending a high volume of suspicious emails to both internal and external email addresses. Darktrace was able to identify that the emails attempting to impersonate the legitimate service DocuSign and contained a malicious link prompting users to click on the text “Review Document”. Upon clicking this link, users would be redirected to a site hosted on Adobe Express, namely hxxps://express.adobe[.]com/page/A9ZKVObdXhN4p/.

Adobe Express is a free service that allows users to create web pages which can be hosted and shared publicly; it is likely that the threat actor here leveraged the service to use in their phishing campaign. When clicked, such links could result in a device unwittingly downloading malware hosted on the site, or direct unsuspecting users to a spoofed login page attempting to harvest user credentials by imitating legitimate companies like Microsoft.

Figure 5: Screenshot of the phishing email, containing a malicious link hidden behind the “Review Document” text. The embedded link directs to a now-defunct page that was hosted on Adobe Express.

The malicious site hosted on Adobe Express was subsequently taken down by Adobe, possibly in response to user reports of maliciousness. Unfortunately though, platforms like this that offer free webhosting services can easily and repeatedly be abused by malicious actors. Simply by creating new pages hosted on different IP addresses, actors are able to continue to carry out such phishing attacks against unsuspecting users.

In addition to the suspicious SaaS and email activity that took place between May 9 and May 10, Darktrace/Email also detected the compromised account sending and receiving suspicious emails starting on May 4, just two days after Darktrace’s initial deployment on the customer’s environment. It is probable that the SaaS account was compromised around this time, or even prior to Darktrace’s deployment on May 2, likely via a phishing and credential harvesting campaign similar to the one detailed above.

Figure 6: Event logs of the compromised SaaS user, here seen breaching several Darktrace/Email model breaches on 4th May.

Darktrace のカバレッジ

As the customer was soon to begin their trial period, Darktrace RESPOND was set in “human confirmation” mode, meaning that any preventative RESPOND actions required manual application by the customer’s security team.

If Darktrace RESPOND had been enabled in autonomous response mode during this incident, it would have taken swift mitigative action by logging the suspicious user out of the SaaS account and disabling the account for a defined period of time, in doing so disrupting the attack at the earliest possible stage and giving the customer the necessary time to perform remediation steps.  As it was, however, these RESPOND actions were suggested to the customer’s security team for them to manually apply.

Figure 7: Example of Darktrace RESPOND notices, in response to the anomalous user activity.

Nevertheless, with Darktrace DETECT/Cloud in place, visibility over the anomalous cloud-based activities was significantly increased, enabling the swift identification of the chain of suspicious activities involved in this compromise.

In this case, the prospective customer reached out to Darktrace directly through the Ask the Expert (ATE) service. Darktrace’s expert analyst team then conducted a timely and comprehensive investigation into the suspicious activity surrounding this SaaS compromise, and shared these findings with the customer’s security team.

結論

Ultimately, this example of SaaS account compromise highlights Darktrace’s unique ability to learn an organization’s digital environment and recognize activity that is deemed to be unexpected, within a matter of days.

Due to the lack of obvious or known indicators of compromise (IoCs) associated with the malicious activity in this incident, this account hijack would likely have gone unnoticed by traditional security tools that rely on a rules and signatures-based approach to threat detection. However, Darktrace’s Self-Learning AI enables it to detect the subtle deviations in a device’s behavior that could be indicative of an ongoing compromise.

Despite being newly deployed on a prospective customer’s network, Darktrace DETECT was able to identify unusual login attempts from geographically improbable locations, suspicious email rule updates, password changes, as well as the subsequent mounting of a phishing campaign, all before the customer’s trial of Darktrace had even begun.

When enabled in autonomous response mode, Darktrace RESPOND would be able to take swift preventative action against such activity as soon as it is detected, effectively shutting down the compromise and mitigating any subsequent phishing attacks.

With the full deployment of Darktrace’s suite of products, including Darktrace/Cloud and Darktrace/Email, customers can rest assured their critical data and systems are protected, even in the case of hybrid and multi-cloud environments.

Credit: Samuel Wee, Senior Analyst Consultant & Model Developer

付録

参考文献

[1] https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023

[2] https://www.upguard.com/blog/saas-security-risks

[3] https://www.microsoft.com/en-us/security/blog/2022/11/16/token-tactics-how-to-prevent-detect-and-respond-to-cloud-token-theft/

[4] https://learn.microsoft.com/en-us/powershell/module/exchange/disable-inboxrule?view=exchange-ps

[5] https://learn.microsoft.com/en-us/dotnet/api/microsoft.exchange.webservices.data.ruleactions.stopprocessingrules?view=exchange-ews-api

[6] https://learn.microsoft.com/en-us/dotnet/api/microsoft.exchange.webservices.data.ruleactions.movetofolder?view=exchange-ews-api

[7] https://blog.knowbe4.com/check-your-email-rules-for-maliciousness

Darktraceによるモデル検知

Darktrace DETECT/Cloud and RESPOND Models Breached:

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Unusual Activity / Multiple Unusual External Sources for SaaS Credential

Antigena / SaaS / Antigena Unusual Activity Block (RESPOND Model)

SaaS / Compliance / New Email Rule

Antigena / SaaS / Antigena Significant Compliance Activity Block

SaaS / Compromise / Unusual Login and New Email Rule (Enhanced Monitoring Model)

Antigena / SaaS / Antigena Suspicious SaaS Activity Block (RESPOND Model)

SaaS / Compromise / SaaS Anomaly Following Anomalous Login (Enhanced Monitoring Model)

SaaS / Compromise / Unusual Login and Account Update

Antigena / SaaS / Antigena Suspicious SaaS Activity Block (RESPOND Model)

IoC – Type – Description & Confidence

hxxps://express.adobe[.]com/page/A9ZKVObdXhN4p/ - Domain – Probable Phishing Page (Now Defunct)

37.19.221[.]142 – IP Address – Unusual Login Source

35.174.4[.]92 – IP Address – Unusual Login Source

MITRE ATT&CK マッピング

Tactic - Techniques

INITIAL ACCESS, PRIVILEGE ESCALATION, DEFENSE EVASION, PERSISTENCE

T1078.004 – Cloud Accounts

探索

T1538 – Cloud Service Dashboards

CREDENTIAL ACCESS

T1539 – Steal Web Session Cookie

RESOURCE DEVELOPMENT

T1586 – Compromise Accounts

PERSISTENCE

T1137.005 – Outlook Rules

Probability yardstick used to communicate the probability that statements or explanations given are correct.
続きを読む
著者について
Min Kim
Cyber Security Analyst

Good news for your business.
Bad news for the bad guys.

無償トライアルを開始

無償トライアルを開始

柔軟な導入
Cloud-based deployment.
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
フォームを送信する際に何らかの問題が発生しました。

デモを見る

柔軟な導入
仮想的にインストールすることも、ハードウェアでインストールすることも可能です。
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。