Blog

Threat Finds

APT41 によるゼロデイ脆弱性悪用の検知

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Apr 2020
01
Apr 2020
This blog looks at how the cyber-criminal group APT41 exploited a zero-day vulnerability, and examines how Darktrace’s AI detected and investigated the threat at machine speed.

エグゼクティブサマリー

  • Darktrace は 3 月上旬にいくつかの高度に標的を絞った攻撃を検知しました。これらが発生したのは 関連するシグネチャが利用可能になるかなり前でした。2 週間後、これらの攻撃は中国の攻撃アクター、APT41 によるものであることがわかりました。
  • APT41 は Zoho ManageEngine のゼロデイ脆弱性、CVE-2020-10189 を悪用しました。Darktrace はこれらの攻撃の最も早い段階で自動的に検知しレポートを生成したため、顧客は影響を受ける前に脅威を封じ込めることができました。
  • 本稿で解説する侵入の事例は、CVE-2020-10189 により発生した侵入の機会を利用し、その期間中にできるだけ多数の企業に対して最初のアクセスを得ようとした APT41 による広範な作戦の一部で した。
  • Darktrace が生成したレポートは、インシデントのあらゆる側面を意味のあるセキュリティ解説として明確に描き出していました。経験の浅い対応者であっても、この出力結果をレビューすることにより、このゼロデイ APT 攻撃に対して 5分以内に対処することができたはずです。

APT41 による世界規模の攻撃に対抗

3月上旬、Darktraceは米国とヨーロッパの顧客を標的としたいくつかの高度な攻撃を検知しました。これらの大 半は法律分野の顧客でした。攻撃の戦術、技術および手順(TTP:Techniques, Tools & Procedures)は 共通しており、外部公開サーバーを標的とし、影響の大きな脆弱性を悪用したものでした。先週、FireEyeは この疑わしいアクティビティを中国のサイバースパイ活動集団APT41に起因するものとしています。

この攻撃は Zoho ManageEngine のゼロデイ脆弱性であるCVE-2020-10189を使用してさまざまな企業へのアクセスを獲得しましたが 、最初の侵入以後フォローアップの動作はほとんどあるいはまったく検知されませんでした。このアクティビティは、ゼロデイ脆弱性が利用できる期間にできる限り、多数の標的企業に対して最初のアクセスを得ようとする、広範な作戦であったことを示しています。

Darktrace は 2020 年 3 月 8 日日曜日午前中(UTC)に悪意あるアクティビティを観測しましたが、これは以前中国のサイバースパイ活動集団 APT41 によるものとされた攻撃とほぼ活動時間が一致していました。

以下のグラフは、APT41に標的にされた顧客の1社で見られた攻撃のタイムライン例です。他の顧客の環境で観測された攻撃もこれと同様のタイムラインでした。

Timeline of the APT41 attack
図1: 攻撃のタイムライン

技術分析

ここで説明されている攻撃は、Zoho ManageEngineのゼロデイ脆弱性、CVE-2020-10189を狙ったものです。ほとんどの攻撃 は自動化されているものと思われました。

最初の侵入と、それに続くいくつかのペイロードダウンロード、そしてコマンド&コントロール(C2)トラフィックを観測しました。すべてのケースにおいて、これらのアクティビティはラテラルムーブメントやデータ持ち出しなど、攻撃ライフサイクル後期のステップが見られる前に封じ込められました。

以下のスクリーンショットはCyber AI Analystでレポートされた主な検知結果です。SSLおよびHTTPのC2トラ フィックに関するレポートだけでなく、ペイロードのダウンロードについてもレポートしています:

Cyber AI Analyst breaks down the APT41 attack
図2: Cyber AI Analyst による SSL C2 検知
図3: Cyber AI Analyst によるペイロード検知

最初の侵入

最初の侵入は、Zoho ManageEngine のゼロデイ脆弱性、CVE-2020-10189 の悪用に成功したところから始まりました。侵入後、Microsoft BITSAdmin コマンドラインツールが使われ、以下の悪意あるバッチファイルが フェッチおよびインストールされました:

インフラストラクチャ 66.42.98[.]220 の 12345 ポートからの install.bat (MD5: 7966c2c546b71e800397a67f942858d0)

Source: 10.60.50.XX
Destination: 66.42.98[.]220
Destination Port: 12345
Content Type: application/x-msdownload
Protocol: HTTP
Host: 66.42.98[.]220
URI: /test/install.bat
Method: GET
Status Code: 200

図4: バッチファイルをフェッチする送信接続

最初の侵入後まもなく、第一段階のCobalt Strike Beacon LOADERがダウンロードされました。

Cobalt Strike Beacon loader screenshot
図5: Cobalt Strike Beacon LOADERの検知

コマンド&コントロールトラフィック

興味深いことに、TeamViewerのアクティビティとNotepad++のダウンロードは、いくつかの顧客攻撃でC2トラフィックが開始されるのと同時に行われていました。これは、APT41が完全に環境寄生型攻撃(Living off the Land)を実行するのではなく、使い慣れたツールを使用しようとしていることを示しています。

Storesyncsvc.dll は exchange.dumb1[.]com に接続する Cobalt Strike BEACON インプラント(トライアル版)です。74.82.201[.]8 に対する DNS 解決の成功が観測され、Darktrace はこれを Dynamic DNS プロパティを使ったホスト名への SSL 接続の成功と判別しました。

exchange.dumb1[.]com への複数回の接続は、C2センターへのビーコニングであると識別されました。最初のCobalt Strike BEACONへのこのC2トラフィックを使って、第二段階のペイロードがダウンロードされました。

興味深いことに、一部の顧客への攻撃ではC2トラフィックの開始と同じタイミングでTeamviewerアクティビティと Notepad++ のダウンロードも行われていました。これはAPT41が環境寄生型での攻撃ではなく、馴染みのあるツールを使おうとしていたことを示すものです。少なくとも、これら2つのツールが使用されたことは、通常のビジネス活動ではなく侵入によるものである可能性が高いということです。Notepad++は標的となった顧客の環境では 通常使われていませんでした。Teamviewer についても然りです。事実、これらのアプリケーションの使用はどち らも標的となった組織にとって100%通常とは異なるアクティビティでした。

攻撃ツールのダウンロード

その後、Certificate Servicesの一部としてインストールされるCertUtil.exeコマンドラインプログラムを利用して 外部への接続が行われ、第二段階のペイロードがダウンロードされました。

Detection associated with Meterpreter activity

図6: DarktraceはCertUtilの使用を検知

この実行形式がダウンロードされた1-2時間後、感染したデバイスが送信HTTP接続を行いURI/TzGGを要求しました。これはMeterpreterがCobalt Strike Beaconのためにさらにシェルコードをダウンロードしているものと識別されました。

図 7: Meterpreter アクティビティに関連した検知結果。水平方向の移動や顕著なデータ取り出しなどは観測されませんでした。

Cyber AI Analyst がゼロデイエクスプロイトをどのようにレポートしたか

Darktraceはゼロデイ攻撃作戦を検知しただけではなく、Cyber AI Analystにより個々のイベントを調査しレポ ートを生成したため、セキュリティチームは即座にアクションを取る準備ができ、貴重な時間を稼ぐことができまし た。

以下のスクリーンショットは、ある感染した環境において、侵入された8日間にわたってCyber AI Analystが検知 したインシデントのレポートです。左端に表示されている最初のインシデントは、本稿で解説しているAPTアクティ ビティです。他の5つのインシデントはAPTアクティビティとは関係のない、それほど深刻でないインシデントです。

AI Analyst Security Incidents
図8: Cyber AI Analystが明らかにしたセキュリティインシデント

Cyber AI Analystは8日間に合計6件のインシデントをレポートしました。Cyber AI Analystでレポートされた各インシデントに対しては、詳細なタイムラインとインシデントのサマリーが簡潔な形式でまとめられているため、平均2分程度でレビューすることが可能です。つまり、Cyber AI Analystを使用することにより、技術を専門としな い人であっても、このような洗練されたゼロデイインシデントに対して5分以内に対応策を実行することができたということです。

結論

公開されている侵害インジケータ(IoC: Indicators of Compromise)やオープンソースのインテリジェンスが存在しない場合、標的型攻撃はきわめて検知が困難になります。さらに、最高レベルの検知を行っても早期段階 でセキュリティアナリストによるアクションがとれなければ意味がありません。圧倒されるような大量のアラートが生成されてしまう、あるいはトリアージと調査を行うためのスキルの障壁が高すぎる、などの理由から、あまりにも多くのケースでこうした問題が発生しています。

今回の事例は、APT41が多数のさまざまな企業および業種に対して最初のアクセスを得ようとした広範な作戦とみられます。非常に高度な性質を持っていましたが、APT41は多数の企業を同時に標的とすることで、速度を優先してステルス性を犠牲にしたのです。APT41はZohoゼロデイがもたらした限られた好機を、ITスタッフがパ ッチの適用を開始する前に利用したかったのです。

DarktraceのCyber AIは、標的型の未知の攻撃を示すかすかな兆候を、過去の知識やIoCに頼ることなく早 い段階で検知できるよう特に設計されています。これは、あらゆるユーザー、デバイス、および関連するグループの通常の動作パターンを、ゼロから「オンザジョブ」で継続的に学習することにより実現されます。

APT41による最近のゼロデイ攻撃作戦に際して、(a) 自己学習AIにより未知の脅威を検知する能力、および (b) AIによる調査とレポートにより人手不足の対応チームを補強できることがきわめて重要であることが証明されました。事実、Cyber AIにより攻撃がライフサイクルの後段にエスカレートする前に、迅速に封じ込めることがで きました。

侵害インジケータ

Darktraceでのモデル違反の種類

  • Anomalous File / Script from Rare External
  • Anomalous File / EXE from Rare External Location
  • Compromise / SSL to DynDNS
  • Compliance / CertUtil External Connection
  • Anomalous Connection / CertUtil Requesting Non Certificate
  • Anomalous Connection / CertUtil to Rare Destination
  • Anomalous Connection / New User-Agent to IP Without Hostname
  • Device / Initial Breach Chain Compromise
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Anomalous File / Numeric Exe Download
  • Device / Large Number of Model Breaches
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compliance / Remote Management Tool On Server

以下のスクリーンショットは、ある顧客への侵入インシデント発生時に同時に発生していたDarktraceモデル違反を表示しています。

Figure 9: Darktrace model breaches occurring together

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Max Heinemeyer
Chief Product Officer

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
この記事を共有
USE CASES
該当する項目はありません。
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について

Blog

Inside the SOC

Sliver C2: How Darktrace Provided a Sliver of Hope in the Face of an Emerging C2 Framework

Default blog imageDefault blog image
17
Apr 2024

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

結論

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

付録

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

侵害指標(IoC)一覧

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

参考文献

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

続きを読む
著者について
Natalia Sánchez Rocafort
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.