Blog

OT

Thought Leadership

デジタル化する闇:近代そのものを脅かす電力網へのサイバー攻撃

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Jul 2019
30
Jul 2019
State-sponsored cyber-criminals are increasingly targeting energy grids, with the intention of causing outages that could bring victimized regions to a screeching halt.

Among all historical discoveries, none has transformed civilization quite like electricity. From the alarm clock that wakes you up in the morning to the lights you flip off before falling asleep, the modern world has largely been made possible by electric power — a fact we tend only to reflect on with annoyance when our phones run out of battery.

However, the days of taking for granted our greatest discovery may well be nearing an end. As international conflict migrates to the digital domain, state-sponsored cyber-criminals are increasingly targeting energy grids, with the intention of causing outages that could bring victimized regions to a screeching halt. And ironically, the more advanced our illuminated world of electronics becomes, the more proficient these cyber-attacks will be at sending society back to the Dark Ages.

The light bulb goes off

On December 23, 2015, at the Prykarpattyaoblenergo power plant in Western Ukraine, a worker noticed his computer cursor quietly flitting across the screen of its own accord.

Unbeknownst to all but a select few criminals, the worker was, in fact, witnessing the dawn of a new era of cyber warfare. For the next several minutes, the cursor systematically clicked open one circuit breaker after another, leaving more than 230,000 Ukrainians without power. The worker could only watch as the cursor then logged him out of the control panel, changed his password, and shut down the backup generator at the plant itself.

As the first documented outage precipitated by a cyber-attack, the incident provoked speculation from the global intelligence community that nation-state actors had been involved, particularly given the sophisticated tactics in question. Indeed, blackouts that plunge entire cities — or even entire countries — in darkness are a devastating tactic in the geopolitical chess game. Unlike direct acts of war, online onslaughts are difficult to trace, shielding those responsible from the international backlash that accompanies military aggression. And with rival economies racing to invent the next transformative application of electricity, it stands to reason that adversaries would attempt to win that race by literally turning off the other’s lights.

Since the watershed Ukraine attack, the possibility of a similar strike has been a top-of-mind concern for governments around the globe. In March 2018, both American and European utilities were hit by a large-scale attack that could have “shut power plants off at will” if so desired, but which seemed intended instead for surveillance and intimidation purposes. While such attacks may originate in cyberspace, any escalation beyond mere warning shots would have dramatic consequences in the real world.

Smart meters, smarter criminals

Power distribution grids are sprawling, complex environments, controlled by digital systems, and composed of a vast array of substations, relays, control rooms, and smart meters. Between legacy equipment running decades-old software and new IIoT devices designed without rudimentary security controls, these bespoke networks are ripe with zero-day vulnerabilities. Moreover, because conventional cyber defenses are designed only to spot known threats facing traditional IT, they are blind to novel attacks that target such unique machines.

Among all of these machines, smart meters — which communicate electricity consumption back to the supplier — are notoriously easy to hack. And although most grids are designed to avoid this possibility, the rapid adoption of such smart meters presents a possible gateway for threat-actors seeking to access a power grid’s control system. In fact, disabling individual smart meters could be sufficient to sabotage the entire grid, even without hijacking that control system itself. Just a 1% change in electricity demand could prompt a grid to shut down in order to avoid damage, meaning that it might not take many compromised meters to reach the breaking point.

More alarming still, a large and sudden enough change in electricity demand could create a surge that inflicts serious physical damage and produces enduring blackouts. Smart energy expert Nick Hunn asserts that, in this case, “the task of repairing the grid and restoring reliable, universal supply can take years.”

Empowering the power plant

Catching suspicious activity on an energy grid requires a nuanced and evolving understanding of how the grid typically functions. Only this understanding of normalcy for each particular environment — comprised of millions of ever-changing online connections — can reveal the subtle anomalies that accompany all cyber-attacks, whether or not they’ve been seen before.

The first step is visibility: knowing what’s happening across these highly distributed networks in real time. The most effective way to do this is to monitor the network traffic generated by the control systems, as OT machines themselves rarely support security agent software. Fortunately, in most power grid architectures, these machines communicate with a central SCADA server, which can therefore provide visibility over much of the grid. However, traffic from the control system is not sufficient to see the total picture, since remote substations can be directly compromised by physical access or serve as termination points for a web of smart meters. To achieve total oversight, dedicated monitoring probes can be deployed into key remote locations.

Once you get down to this level — monitoring the bespoke and often antiquated systems inside substations — you have firmly left the world of commodity IT behind. Rather than dealing with standard Windows systems and protocols, you are now facing a jungle of custom systems and proprietary protocols, an environment that off-the-shelf security solutions are not designed to handle.

The only way to make sense of these environments is to avoid predefining what they look like, instead using artificial intelligence that self-learns to differentiate between normal and abnormal behavior for each power grid while ‘on the job’. Vendor- and protocol-agnostic, such self-learning tools are singularly capable of detecting threats against both outdated machines and new IIoT devices. And with power plants and energy grids fast becoming the next theater of cyber warfare, the switch to AI security cannot come soon enough.

To learn more about how self-learning AI tools defend power grids and critical infrastructure, check out our white paper: Cyber Security for Industrial Control Systems: A New Approach.

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Andrew Tsonchev
VP of Technology

Andrew is a technical expert on cyber security and advises Darktrace’s strategic customers on advanced threat defense, AI and autonomous response. He has a background in threat analysis and research, and holds a first-class degree in physics from Oxford University and a first-class degree in philosophy from King’s College London. His comments on cyber security and the threat to critical national infrastructure have been reported in international media, including CNBC and the BBC World.

Book a 1-1 meeting with one of our experts
この記事を共有
USE CASES
該当する項目はありません。
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

Inside the SOC

Identifying the Imposter: Darktrace’s Detection of Simulated Malware vs the Real Thing

Default blog imageDefault blog image
13
Mar 2024

Distinguishing attack simulations from the real thing

In an era marked by the omnipresence of digital technologies and the relentless advancement of cyber threats, organizations face an ongoing battle to safeguard their digital environment. Although red and blue team exercises have long served as cornerstones in evaluating organizational defenses, their reliance on manual processes poses significant constraints [1]. Led by seasoned security professionals, these tests offer invaluable insights into security readiness but can be marred by their resource-intensive and infrequent testing cycles. The gaps between assessments leave organizations open to undetected vulnerabilities, compromising the true state of their security environment. In response to the ever-changing threat landscape, organizations are adopting a proactive stance towards cyber security to fortify their defenses.

At the forefront, these efforts tend to revolve around simulated attacks, a process designed to test an organization's security posture against both known and emerging threats in a safe and controlled environment [2]. These meticulously orchestrated simulations imitate the tactics, techniques, and procedures (TTPs) employed by actual adversaries and provide organizations with invaluable insights into their security resilience and vulnerabilities. By immersing themselves in simulated attack scenarios, security teams can proactively probe for vulnerabilities, adopt a more aggressive defense posture, and stay ahead of evolving cyber threats.

Distinguishing between simulated malware observations and authentic malware activities stands as a critical imperative for organizations bolstering their cyber defenses. While simulated platforms offer controlled scenarios for testing known attack patterns, Darktrace’s Self-Learning AI can detect known and unknown threats, identify zero-day threats, and previously unseen malware variants, including attack simulations. Whereas simulated platforms focus on specific known attack vectors, Darktrace DETECT™ and Darktrace RESPOND™ can identify and contain both known and unknown threats across the entire attack surface, providing unparalleled protection of the cyber estate.

Darktrace’s Coverage of Simulated Attacks

In January 2024, the Darktrace Security Operations Center (SOC) received a high volume of alerts relating to an unspecified malware strain that was affecting multiple customers across the fleet, raising concerns, and prompting the Darktrace Analyst team to swiftly investigate the multitude of incident. Initially, these activities were identified as malicious, exhibiting striking resemblance to the characteristics of Remcos, a sophisticated remote access trojan (RAT) that can be used to fully control and monitor any Windows computer from XP and onwards [3]. However, further investigation revealed that these activities were intricately linked to a simulated malware provider.

This discovery underscores a pivotal insight into Darktrace’s capabilities. To this point, leveraging advanced AI, Darktrace operates with a sophisticated framework that extends beyond conventional threat detection. By analyzing network behavior and anomalies, Darktrace not only discerns between simulated threats, such as those orchestrated by breach and attack simulation platforms and genuine malicious activities but can also autonomously respond to these threats with RESPOND. This showcases Darktrace’s advanced capabilities in effectively mitigating cyber threats.

Attack Simulation Process: Initial Access and Intrusion

Darktrace initially observed devices breaching several DETECT models relating to the hostname “new-tech-savvy[.]com”, an endpoint that was flagged as malicious by multiple open-source intelligence (OSINT) vendors [4].

In addition, multiple HTML Application (HTA) file downloads were observed from the malicious endpoint, “new-tech-savvy[.]com/5[.]hta”. HTA files are often seen as part of the UAC-0050 campaign, known for its cyber-attacks against Ukrainian targets, which tends to leverage the Remcos RAT with advanced evasion techniques [5] [6]. Such files are often critical components of a malware operation, serving as conduits for the deployment of malicious payloads onto a compromised system. Often, within the HTA file resides a VBScript which, upon execution, triggers a PowerShell script. This PowerShell script is designed to facilitate the download of a malicious payload, namely “word_update.exe”, from a remote server. Upon successful execution, “word_update.exe” is launched, invoking cmd.exe and initiating the sharing of malicious data. This process results in the execution of explorer.exe, with the malicious RemcosRAT concealed within the memory of explorer.exe. [7].

As the customers were subscribed to Darktrace’s Proactive Threat Notification (PTN) service, an Enhanced Monitoring model was breached upon detection of the malicious HTA file. Enhanced Monitoring models are high-fidelity DETECT models designed to identify activity likely to be indicative of compromise. These PTN alerts were swiftly investigated by Darktrace’s round the clock SOC team.

Following this successful detection, Darktrace RESPOND took immediate action by autonomously blocking connections to the malicious endpoint, effectively preventing additional download attempts. Similar activity may be seen in the case of a legitimate malware attack; however, in this instance, the hostname associated with the download confirmed the detected malicious activity was the result of an attack simulation.

Figure 1: The Breach Log displays the model breach, “Anomalous File/Incoming HTA File”, where a device was detected downloading the HTA file, “5.hta” from the endpoint, “new-tech-savvy[.]com”.
'
Figure 2: The Model Breach Event Log shows a device making connections to the endpoint, “new-tech-savvy[.]com”. As a result, theRESPOND model, “Antigena/Network/External Threat/Antigena File then New Outbound Block", breached and connections to this malicious endpoint were blocked.
Figure 3: The Breach Log further showcases another RESPOND model, “Antigena/Network/External Threat/Antigena Suspicious File Block", which was triggered when the device downloaded a  HTA file from the malicious endpoint, “new-tech-savvy[.]com".

In other cases, Darktrace observed SSL and HTTP connections also attributed to the same simulated malware provider, highlighting Darktrace’s capability to distinguish between legitimate and simulated malware attack activity.

Figure 4: The Model Breach “Anomalous Connection/Low and Slow Exfiltration" displays the hostname of a simulated malware provider, confirming the detected malicious activity as the result of an attack simulation.
Figure 5: The Model Breach Event Log shows the SSL connections made to an endpoint associated with the simulated malware provider.
Figure 6: Darktrace’s Advanced Search displays SSL connection logs to the endpoint of the simulated malware provider around the time the simulation activity was observed.

Upon detection of the malicious activity occurring within affected customer networks, Darktrace’s Cyber AI Analyst™ investigated and correlated the events at machine speed. Figure 8 illustrates the synopsis and additional technical information that AI Analyst generated on one customer’s environment, detailing that over 220 HTTP queries to 18 different endpoints for a single device were seen. The investigation process can also be seen in the screenshot, showcasing Darktrace’s ability to provide ‘explainable AI’ detail. AI Analyst was able to autonomously search for all HTTP connections made by the breach device and identified a single suspicious software agent making one HTTP request to the endpoint, 45.95.147[.]236.

Furthermore, the malicious endpoints, 45.95.147[.]236, previously observed in SSH attacks using brute-force or stolen credentials, and “tangible-drink.surge[.]sh”, associated with the Androxgh0st malware [8] [9] [10], were detected to have been requested by another device.

This highlights Darktrace’s ability to link and correlate seemingly separate events occurring on different devices, which could indicate a malicious attack spreading across the network.  AI Analyst was also able to identify a username associated with the simulated malware prior to the activity through Kerberos Authentication Service (AS) requests. The device in question was also tagged as a ‘Security Device’ – such tags provide human analysts with valuable context about expected device activity, and in this case, the tag corroborates with the testing activity seen. This exemplifies how Darktrace’s Cyber AI Analyst takes on the labor-intensive task of analyzing thousands of connections to hundreds of endpoints at a rapid pace, then compiling results into a single pane that provides customer security teams with the information needed to evaluate activities observed on a device.

All in all, this demonstrates how Darktrace’s Self-Learning AI is capable of offering an unparalleled level of awareness and visibility over any anomalous and potentially malicious behavior on the network, saving security teams and administrators a great deal of time.

Figure 7: Cyber AI Analyst Incident Log containing a summary of the attack simulation activity,, including relevant technical details, and the AI investigation process.

結論

Simulated cyber-attacks represent the ever-present challenge of testing and validating security defenses, while the threat of legitimate compromise exemplifies the constant risk of cyber threats in today’s digital landscape. Darktrace emerges as the solution to this conflict, offering real-time detection and response capabilities that identify and mitigate simulated and authentic threats alike.

While simulations are crafted to mimic legitimate threats within predefined parameters and controlled environments, the capabilities of Darktrace DETECT transcend these limitations. Even in scenarios where intent is not malicious, Darktrace’s ability to identify anomalies and raise alerts remains unparalleled. Moreover, Darktrace’s AI Analyst and autonomous response technology, RESPOND, underscore Darktrace’s indispensable role in safeguarding organizations against emerging threats.

Credit to Priya Thapa, Cyber Analyst, Tiana Kelly, Cyber Analyst & Analyst Team Lead

付録

モデルブリーチ 一覧

Darktrace DETECT Model Breach Coverage

Anomalous File / Incoming HTA File

Anomalous Connection / Low and Slow Exfiltration

Darktrace RESPOND Model Breach Coverage

§  Antigena / Network/ External Threat/ Antigena File then New Outbound Block

Cyber AI Analyst Incidents

• Possible HTTP Command and Control

• Suspicious File Download

IoC一覧

IP Address

38.52.220[.]2 - Malicious Endpoint

46.249.58[.]40 - Malicious Endpoint

45.95.147[.]236 - Malicious Endpoint

Hostname

tangible-drink.surge[.]sh - Malicious Endpoint

new-tech-savvy[.]com - Malicious Endpoint

参考文献

1.     https://xmcyber.com/glossary/what-are-breach-and-attack-simulations/

2.     https://www.picussecurity.com/resource/glossary/what-is-an-attack-simulation

3.     https://success.trendmicro.com/dcx/s/solution/1123281-remcos-malware-information?language=en_US&sfdcIFrameOrigin=null

4.     https://www.virustotal.com/gui/url/c145cf7010545791602e9585f447347c75e5f19a0850a24e12a89325ded88735

5.     https://www.virustotal.com/gui/url/7afd19e5696570851e6413d08b6f0c8bd42f4b5a19d1e1094e0d1eb4d2e62ce5

6.     https://thehackernews.com/2024/01/uac-0050-group-using-new-phishing.html

7.     https://www.uptycs.com/blog/remcos-rat-uac-0500-pipe-method

8.     https://www.virustotal.com/gui/ip-address/45.95.147.236/community

9.     https://www.virustotal.com/gui/domain/tangible-drink.surge.sh/community

10.  https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-016a

続きを読む
著者について
Priya Thapa
Cyber Analyst

Blog

該当する項目はありません。

Mastering Cloud Migration: Strategies, Services, and Risks

Default blog imageDefault blog image
12
Mar 2024

What is cloud migration?

Cloud migration, in its simplest form, refers to the process of moving digital assets, such as data, applications, and IT resources, from on-premises infrastructure or legacy systems to cloud computing environments. There are various flavours of migration and utilization, but according to a survey conducted by IBM, one of the most common is the 'Hybrid' approach, with around 77% of businesses adopting a hybrid cloud approach.

There are three key components of a hybrid cloud migration model:

  1. On-Premises (On-Prem): Physical location with some amount of hardware and networking, traditionally a data centre.
  2. Public Cloud: Third-party providers like AWS, Azure, and Google, who offer multiple services such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS).
  3. Private Cloud: A cloud computing environment where resources are isolated for one customer.

Why does cloud migration matter for enterprises?

Cloud adoption provides many benefits to businesses, including:

  1. Scalability: Cloud environments allow enterprises to scale resources up or down based on demand, enabling them to quickly adapt to changing business requirements.
  2. Flexibility and Agility: Cloud platforms provide greater flexibility and agility, enabling enterprises to innovate and deploy new services more rapidly compared to traditional on-premises infrastructure.
  3. Cost Efficiency: Pay-as-you-go model, allowing enterprises to reduce capital expenditures on hardware and infrastructure.
  4. Enhanced Security: Cloud service providers invest heavily in security measures to protect data and infrastructure, offering advanced security features and compliance certifications.

The combination of these benefits provides significant potential for businesses to innovate and move quickly, ultimately allowing them to be flexible and adapt to changing market conditions, customer demands, and technological advancements with greater agility and efficiency.

Cloud migration strategy

There are multiple migration strategies a business can adopt, including:

  1. Rehosting (Lift-and-shift): Quickly completed but may lead to increased costs for running workloads.
  2. Refactoring (Cloud Native): Designed specifically for the cloud but requires a steep learning curve and staff training on new processes.
  3. Hybrid Cloud: Mix of on-premises and public cloud use, offering flexibility and scalability while keeping data secure on-premises. This can introduce complexities in setup and management overhead and requires ensuring security and compliance in both environments.

It is important to note that each strategy has its trade-offs and there is no single gold standard for a one size fits all cloud migration strategy. Different businesses will prioritize and leverage different benefits, for instance while some might prefer a rehosting strategy as it gets them migrated the fastest, it typically ends up also being the most costly strategy as “lift-and-shift” doesn’t take advantage of many key benefits that the cloud has to offer. Conversely, refactoring is a strategy optimized at making the most of the benefits that cloud providers have to offer, however the process of redesigning applications requires cloud expertise and based on the scale of applications that are required to be refactored this strategy might not be the quickest when it comes to moving applications from being hosted on premise to in the cloud.  

Phases of a cloud migration

At the highest level, there are four main steps in a successful migration:

  1. Discover: Identify and categorize IT assets, applications, and critical dependencies.
  2. Plan: Develop a detailed migration plan, including timelines, resource allocation, and risk management strategies.
  3. Migrate: Execute the migration plan, minimizing disruption to business operations.
  4. Optimize: Continuously optimize the cloud environment using automation, performance monitoring, and cost management tools to improve efficiency, performance, and scalability.

While it is natural to race towards the end goals of a cloud migration, most successful cloud migration strategies allocate the appropriate timelines to each phase.  

The “Discover” phase specifically is where most businesses can set themselves up for success. Having a complete understanding of assets, applications, services, and dependencies needed to migrate however is much easier said than done. Given the pace of change and how laborious of a task inventorying everything can be to manage and maintain, most mistakes at this stage will propagate and amplify through the migration journey.  

Risks and challenges of cloud migration

Though cloud migration offers a wealth of benefits, it also introduces new risks that need to be accounted for and managed effectively. Security should be considered a fundamental part of the process, not an additional measure that can be ‘bolted’ on at the end.

Let’s consider the most popular migration strategy, using a ‘Hybrid Cloud’. A recent report by the industry analyst group Forrester cited that Cloud Security Posture Management (CSPM) tools are just one facet of security, stating:

"No matter how good it is, using a CSPM solution alone will not provide you with full visibility, detection, and effective remediation capabilities for all threats. Your adversaries are also targeting operating systems, existing on-prem network infrastructure, and applications in their quest to steal valuable data".

Unpacking some of the risks here, it’s clear they fall into a range of categories, including:

  1. Security Concerns: Ensuring security across both on-premises and cloud environments, addressing potential misconfigurations and vulnerabilities.
  2. Contextual Understanding: Effective security requires a deep understanding of the organization's business processes and the context in which data and applications operate.
  3. Threat Detection and Response: Identifying and responding to threats in real-time requires advanced capabilities such as AI and anomaly detection.
  4. Platform Approach: Deploying integrated security solutions that provide end-to-end visibility, centralized management, and automated responses across hybrid infrastructure.

Since the cloud doesn’t operate in a vacuum, businesses will always have a myriad of 3rd party applications, users, endpoints, external services, and partners connecting and interacting with their cloud environments. From this perspective, being able to correlate and understand behaviors and activity both within the cloud and its surroundings becomes imperative.

It then follows that context from a business wide perspective is necessary. This has two distinct implications, the first is application or workload specific context (i.e. where do the assets, services, and functions alerted on reside within the cloud application) and the second is business wide context. Given the volume of alerts that security practitioners need to manage, findings that lack the appropriate context to fully understand and resolve the issue create additional strain on teams that are already managing a difficult challenge.  

結論

With that in mind, Darktrace’s approach to security, with its existing and new advances in Cloud Detection and Response capabilities, anomaly detection across SaaS applications, and native ability to leverage many AI techniques to understand the business context within your dynamic cloud environment and on-premises infrastructure. It provides you with the integrated building blocks to provide the ‘360’ degree view required to detect and respond to threats before, during, and long after your enterprise migrates to the cloud.

参考文献

IBM Transformation Index: State of Cloud https://www.ibm.com/blog/hybrid-cloud-use-cases/

https://www.forrester.com/report/the-top-trends-shaping-cloud-security-posture-management-cspm-in-2024/RES180379  

続きを読む
著者について
Adam Stevens
Analyst Technical Director
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.