Blog

Eメール

Thought Leadership

Email Security and the Psychology of Trust: Why Users Face a Losing Game of “Spot the Fake”

Photo showing woman logging into her laptop with username and passwordDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Jul 2023
18
Jul 2023
このDarktrace の長編は、信頼の本質に関する心理学的研究が、私たちとテクノロジーとの関係にどのように関係しているかを調査しています。脳は日常的に使用するデバイスを暗黙のうちに信頼するように設計されているため、フィッシングメールのような異常の識別を人間に頼ることはできません。AIによる異常検知のようなマシンによる増強によって推進されるEメールセキュリティは、この課題に取り組むための最も明確な解決策です。

When security teams discuss the possibility of phishing attacks targeting their organization, often the first reaction is to assume it is inevitable because of the users. Users are typically referenced in cyber security conversations as organizations’ greatest weaknesses, cited as the causes of many grave cyber-attacks because they click links, open attachments, or allow multi-factor authentication bypass without verifying the purpose.

While for many, the weakness of the user may feel like a fact rather than a theory, there is significant evidence to suggest that users are psychologically incapable of protecting themselves from exploitation by phishing attacks, with or without regular cyber awareness trainings. The psychology of trust and the nature of human reliance on technology make the preparation of users for the exploitation of that trust in technology very difficult – if not impossible.

This Darktrace long read will highlight principles of psychological and sociological research regarding the nature of trust, elements of the trust that relate to technology, and how the human brain is wired to rely on implicit trust. These principles all point to the outcome that humans cannot be relied upon to identify phishing. Email security driven by machine augmentation, such as AI anomaly detection, is the clearest solution to tackle that challenge.

What is the psychology of trust?

Psychological and sociological theories on trust largely centre around the importance of dependence and a two-party system: the trustor and the trustee. Most research has studied the impacts of trust decisions on interpersonal relationships, and the characteristics which make those relationships more or less likely to succeed. In behavioural terms, the elements most frequently referenced in trust decisions are emotional characteristics such as benevolence, integrity, competence, and predictability.1

Most of the behavioural evaluations of trust decisions survey why someone chooses to trust another person, how they made that decision, and how quickly they arrived at their choice. However, these micro-choices about trust require the context that trust is essential to human survival. Trust decisions are rooted in many of the same survival instincts which require the brain to categorize information and determine possible dangers. More broadly, successful trust relationships are essential in maintaining the fabric of human society, critical to every element of human life.

Trust can be compared to dark matter (Rotenberg, 2018), which is the extensive but often difficult to observe material that binds planets and earthly matter. In the same way, trust is an integral but often a silent component of human life, connecting people and enabling social functioning.2

Defining implicit and routine trust

As briefly mentioned earlier, dependence is an essential element of the trusting relationship. Being able to build a routine of trust, based on the maintenance rather than establishment of trust, becomes implicit within everyday life. For example, speaking to a friend about personal issues and life developments is often a subconscious reaction to the events occurring, rather than an explicit choice to trust said friend each time one has new experiences.

Active and passive levels of cognition are important to recognize in decision-making, such as trust choices. Decision-making is often an active cognitive process requiring a lot of resource from the brain. However, many decisions occur passively, especially if they are not new choices e.g. habits or routines. The brain’s focus turns to immediate tasks while relegating habitual choices to subconscious thought processes, passive cognition. Passive cognition leaves the brain open to impacts from inattentional blindness, wherein the individual may be abstractly aware of the choice but it is not the focus of their thought processes or actively acknowledged as a decision. These levels of cognition are mostly referenced as “attention” within the brain’s cognition and processing.3

This idea is essentially a concept of implicit trust, meaning trust which is occurring as background thought processes rather than active decision-making. This implicit trust extends to multiple areas of human life, including interpersonal relationships, but also habitual choice and lifestyle. When combined with the dependence on people and services, this implicit trust creates a haze of cognition where trust is implied and assumed, rather than actively chosen across a myriad of scenarios.

Trust and technology

As researchers at the University of Cambridge highlight in their research into trust and technology, ‘In a fundamental sense, all technology depends on trust.’  The same implicit trust systems which allow us to navigate social interactions by subconsciously choosing to trust, are also true of interactions with technology. The implied trust in technology and services is perhaps most easily explained by a metaphor.

Most people have a favourite brand of soda. People will routinely purchase that soda and drink it without testing it for chemicals or bacteria and without reading reviews to ensure the companies that produce it have not changed their quality standards. This is a helpful, representative example of routine trust, wherein the trust choice is implicit through habitual action and does not mean the person is actively thinking about the ramifications of continuing to use a product and trust it.

The principle of dependence is especially important in trust and technology discussions, because the modern human is entirely reliant on technology and so has no way to avoid trusting it.5   Specifically important in workplace scenarios, employees are given a mandatory set of technologies, from programs to devices and services, which they must interact with on a daily basis. Over time, the same implicit trust that would form between two people forms between the user and the technology. The key difference between interpersonal trust and technological trust is that deception is often much more difficult to identify.

The implicit trust in workplace technology

To provide a bit of workplace-specific context, organizations rely on technology providers for the operation (and often the security) of their devices. The organizations also rely on the employees (users) to use those technologies within the accepted policies and operational guidelines. The employees rely on the organization to determine which products and services are safe or unsafe.

Within this context, implicit trust is occurring at every layer of the organization and its technological holdings, but often the trust choice is only made annually by a small security team rather than continually evaluated. Systems and programs remain in place for years and are used because “that’s the way it’s always been done. Within that context, the exploitation of that trust by threat actors impersonating or compromising those technologies or services is extremely difficult to identify as a human.

For example, many organizations utilize email communications to promote software updates for employees. Typically, it would consist of email prompting employees to update versions from the vendors directly or from public marketplaces, such as App Store on Mac or Microsoft Store for Windows. If that kind of email were to be impersonated, spoofing an update and including a malicious link or attachment, there would be no reason for the employee to question that email, given the explicit trust enforced through habitual use of that service and program.

Inattentional blindness: How the brain ignores change

Users are psychologically predisposed to trust routinely used technologies and services, with most of those trust choices continuing subconsciously. Changes to these technologies would often be subject to inattentional blindness, a psychological phenomenon wherein the brain either overwrites sensory information with what the brain expects to see rather than what is actually perceived.

A great example of inattentional blindness6 is the following experiment, which asks individuals to count the number of times a ball is passed between multiple people. While that is occurring, something else is going on in the background, which, statistically, those tested will not see. The shocking part of this experiment comes after, when the researcher reveals that the event occurring in the background not seen by participants was a person in a gorilla suit moving back and forth between the group. This highlights how significant details can be overlooked by the brain and “overwritten” with other sensory information. When applied to technology, inattentional blindness and implicit trust makes spotting changes in behaviour, or indicators that a trusted technology or service has been compromised, nearly impossible for most humans to detect.

With all this in mind, how can you prepare users to correctly anticipate or identify a violation of that trust when their brains subconsciously make trust decisions and unintentionally ignore cues to suggest a change in behaviour? The short answer is, it’s difficult, if not impossible.

How threats exploit our implicit trust in technology

Most cyber threats are built around the idea of exploiting the implicit trust humans place in technology. Whether it’s techniques like “living off the land”, wherein programs normally associated with expected activities are leveraged to execute an attack, or through more overt psychological manipulation like phishing campaigns or scams, many cyber threats are predicated on the exploitation of human trust, rather than simply avoiding technological safeguards and building backdoors into programs.

In the case of phishing, it is easy to identify the attempts to leverage the trust of users in technology and services. The most common example of this would be spoofing, which is one of the most common tactics observed by Darktrace/Email. Spoofing is mimicking a trusted user or service, and can be accomplished through a variety of mechanisms, be it the creation of a fake domain meant to mirror a trusted link type, or the creation of an email account which appears to be a Human Resources, Internal Technology or Security service.

In the case of a falsified internal service, often dubbed a “Fake Support Spoof”, the user is exploited by following instructions from an accepted organizational authority figure and service provider, whose actions should normally be adhered to. These cases are often difficult to spot when studying the sender’s address or text of the email alone, but are made even more difficult to detect if an account from one of those services is compromised and the sender’s address is legitimate and expected for correspondence. Especially given the context of implicit trust, detecting deception in these cases would be extremely difficult.

How email security solutions can solve the problem of implicit trust

How can an organization prepare for this exploitation? How can it mitigate threats which are designed to exploit implicit trust? The answer is by using email security solutions that leverage behavioural analysis via anomaly detection, rather than traditional email gateways.

Expecting humans to identify the exploitation of their own trust is a high-risk low-reward endeavour, especially when it takes different forms, affects different users or portions of the organization differently, and doesn’t always have obvious red flags to identify it as suspicious. Cue email security using anomaly detection as the key answer to this evolving problem.

Anomaly detection enabled by machine learning and artificial intelligence (AI) removes the inattentional blindness that plagues human users and security teams and enables the identification of departures from the norm, even those designed to mimic expected activity. Using anomaly detection mitigates multiple human cognitive biases which might prevent teams from identifying evolving threats, and also guarantees that all malicious behaviour will be detected. Of course, anomaly detection means that security teams may be alerted to benign anomalous activity, but still guarantees that no threat, no matter how novel or cleverly packaged, won’t be identified and raised to the human security team.

Utilizing machine learning, especially unsupervised machine learning, mimics the benefits of human decision making and enables the identification of patterns and categorization of information without the framing and biases which allow trust to be leveraged and exploited.

For example, say a cleverly written email is sent from an address which appears to be a Microsoft affiliate, suggesting to the user that they need to patch their software due to the discovery of a new vulnerability. The sender’s address appears legitimate and there are news stories circulating on major media providers that a new Microsoft vulnerability is causing organizations a lot of problems. The link, if clicked, forwards the user to a login page to verify their Microsoft credentials before downloading the new version of the software. After logging in, the program is available for download, and only requires a few minutes to install. Whether this email was created by a service like ChatGPT (generative AI) or written by a person, if acted upon it would give the threat actor(s) access to the user’s credential and password as well as activate malware on the device and possibly broader network if the software is downloaded.

If we are relying on users to identify this as unusual, there are a lot of evidence points that enforce their implicit trust in Microsoft services that make them want to comply with the email rather than question it. Comparatively, anomaly detection-driven email security would flag the unusualness of the source, as it would likely not be coming from a Microsoft-owned IP address and the sender would be unusual for the organization, which does not normally receive mail from the sender. The language might indicate solicitation, an attempt to entice the user to act, and the link could be flagged as it contains a hidden redirect or tailored information which the user cannot see, whether it is hidden beneath text like “Click Here” or due to link shortening. All of this information is present and discoverable in the phishing email, but often invisible to human users due to the trust decisions made months or even years ago for known products and services.

AI-driven Email Security: The Way Forward

Email security solutions employing anomaly detection are critical weapons for security teams in the fight to stay ahead of evolving threats and varied kill chains, which are growing more complex year on year. The intertwining nature of technology, coupled with massive social reliance on technology, guarantees that implicit trust will be exploited more and more, giving threat actors a variety of avenues to penetrate an organization. The changing nature of phishing and social engineering made possible by generative AI is just a drop in the ocean of the possible threats organizations face, and most will involve a trusted product or service being leveraged as an access point or attack vector. Anomaly detection and AI-driven email security are the most practical solution for security teams aiming to prevent, detect, and mitigate user and technology targeting using the exploitation of trust.

参考文献

1https://www.kellogg.northwestern.edu/trust-project/videos/waytz-ep-1.aspx

2Rotenberg, K.J. (2018). The Psychology of Trust. Routledge.

3https://www.cognifit.com/gb/attention

4https://www.trusttech.cam.ac.uk/perspectives/technology-humanity-society-democracy/what-trust-technology-conceptual-bases-common

5Tyler, T.R. and Kramer, R.M. (2001). Trust in organizations : frontiers of theory and research. Thousand Oaks U.A.: Sage Publ, pp.39–49.

6https://link.springer.com/article/10.1007/s00426-006-0072-4

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Hanah Darley
Director of Threat Research
Book a 1-1 meeting with one of our experts
この記事を共有
PRODUCT SPOTLIGHT
COre coverage

More in this series

該当する項目はありません。

Blog

Inside the SOC

Stemming the Citrix Bleed Vulnerability with Darktrace’s ActiveAI Platform

Default blog imageDefault blog image
28
May 2024

What is Citrix Bleed?

Since August 2023, cyber threat actors have been actively exploiting one of the most significant critical vulnerabilities disclosed in recent years: Citrix Bleed. Citrix Bleed, also known as CVE-2023-4966, remained undiscovered and even unpatched for several months, resulting in a wide range of security incidents across business and government sectors [1].

How does Citrix Bleed vulnerability work?

The vulnerability, which impacts the Citrix Netscaler Gateway and Netscaler ADC products, allows for outside parties to hijack legitimate user sessions, thereby bypassing password and multifactor authentication (MFA) requirements.

When used as a means of initial network access, the vulnerability has resulted in the exfiltration of sensitive data, as in the case of Xfinity, and even the deployment of ransomware variants including Lockbit [2]. Although Citrix has released a patch to address the vulnerability, slow patching procedures and the widespread use of these products has resulted in the continuing exploitation of Citrix Bleed into 2024 [3].

How Does Darktrace Handle Citrix Bleed?

Darktrace has demonstrated its proficiency in handling the exploitation of Citrix Bleed since it was disclosed back in 2023; its anomaly-based approach allows it to efficiently identify and inhibit post-exploitation activity as soon as it surfaces.  Rather than relying upon traditional rules and signatures, Darktrace’s Self-Learning AI enables it to understand the subtle deviations in a device’s behavior that would indicate an emerging compromise, thus allowing it to detect anomalous activity related to the exploitation of Citrix Bleed.

In late 2023, Darktrace identified an instance of Citrix Bleed exploitation on a customer network. As this customer had subscribed to the Proactive Threat Notification (PTN) service, the suspicious network activity surrounding the compromise was escalated to Darktrace’s Security Operation Center (SOC) for triage and investigation by Darktrace Analysts, who then alerted the customer’s security team to the incident.

Darktrace’s Coverage

Initial Access and Beaconing of Citrix Bleed

Darktrace’s initial detection of indicators of compromise (IoCs) associated with the exploitation of Citrix Bleed actually came a few days prior to the SOC alert, with unusual external connectivity observed from a critical server. The suspicious connection in question, a SSH connection to the rare external IP 168.100.9[.]137, lasted several hours and utilized the Windows PuTTY client. Darktrace also identified an additional suspicious IP, namely 45.134.26[.]2, attempting to contact the server. Both rare endpoints had been linked with the exploitation of the Citrix Bleed vulnerability by multiple open-source intelligence (OSINT) vendors [4] [5].

Darktrace model alert highlighting an affected device making an unusual SSH connection to 168.100.9[.]137 via port 22.
Figure 1: Darktrace model alert highlighting an affected device making an unusual SSH connection to 168.100.9[.]137 via port 22.

As Darktrace is designed to identify network-level anomalies, rather than monitor edge infrastructure, the initial exploitation via the typical HTTP buffer overflow associated with this vulnerability fell outside the scope of Darktrace’s visibility. However, the aforementioned suspicious connectivity likely constituted initial access and beaconing activity following the successful exploitation of Citrix Bleed.

Command and Control (C2) and Payload Download

Around the same time, Darktrace also detected other devices on the customer’s network conducting external connectivity to various endpoints associated with remote management and IT services, including Action1, ScreenConnect and Fixme IT. Additionally, Darktrace observed devices downloading suspicious executable files, including “tniwinagent.exe”, which is associated with the tool Total Network Inventory. While this tool is typically used for auditing and inventory management purposes, it could also be leveraged by attackers for the purpose of lateral movement.

防衛回避

In the days surrounding this compromise, Darktrace observed multiple devices engaging in potential defense evasion tactics using the ScreenConnect and Fixme IT services. Although ScreenConnect is a legitimate remote management tool, it has also been used by threat actors to carry out C2 communication [6]. ScreenConnect itself was the subject of a separate critical vulnerability which Darktrace investigated in early 2024. Meanwhile, CISA observed that domains associated with Fixme It (“fixme[.]it”) have been used by threat actors attempting to exploit the Citrix Bleed vulnerability [7].

Reconnaissance and Lateral Movement

A few days after the detection of the initial beaconing communication, Darktrace identified several devices on the customer’s network carrying out reconnaissance and lateral movement activity. This included SMB writes of “PSEXESVC.exe”, network scanning, DCE-RPC binds of numerous internal devices to IPC$ shares and the transfer of compromise-related tools. It was at this point that Darktrace’s Self-Learning AI deemed the activity to be likely indicative of an ongoing compromise and several Enhanced Monitoring models alerted, triggering the aforementioned PTNs and investigation by Darktrace’s SOC.

Darktrace observed a server on the network initiating a wide range of connections to more than 600 internal IPs across several critical ports, suggesting port scanning, as well as conducting unexpected DCE-RPC service control (svcctl) activity on multiple internal devices, amongst them domain controllers. Additionally, several binds to server service (srvsvc) and security account manager (samr) endpoints via IPC$ shares on destination devices were detected, indicating further reconnaissance activity. The querying of these endpoints was also observed through RPC commands to enumerate services running on the device, as well as Security Account Manager (SAM) accounts.  

Darktrace also identified devices performing SMB writes of the WinRAR data compression tool, in what likely represented preparation for the compression of data prior to data exfiltration. Further SMB file writes were observed around this time including PSEXESVC.exe, which was ultimately used by attackers to conduct remote code execution, and one device was observed making widespread failed NTLM authentication attempts on the network, indicating NTLM brute-forcing. Darktrace observed several devices using administrative credentials to carry out the above activity.

In addition to the transfer of tools and executables via SMB, Darktrace also identified numerous devices deleting files through SMB around this time. In one example, an MSI file associated with the patch management and remediation service, Action1, was deleted by an attacker. This legitimate security tool, if leveraged by attackers, could be used to uncover additional vulnerabilities on target networks.

A server on the customer’s network was also observed writing the file “m.exe” to multiple internal devices. OSINT investigation into the executable indicated that it could be a malicious tool used to prevent antivirus programs from launching or running on a network [8].

Impact and Data Exfiltration

Following the initial steps of the breach chain, Darktrace observed numerous devices on the customer’s network engaging in data exfiltration and impact events, resulting in additional PTN alerts and a SOC investigation into data egress. Specifically, two servers on the network proceeded to read and download large volumes of data via SMB from multiple internal devices over the course of a few hours. These hosts sent large outbound volumes of data to MEGA file storage sites using TLS/SSL over port 443. Darktrace also identified the use of additional file storage services during this exfiltration event, including 4sync, file[.]io, and easyupload[.]io. In total the threat actor exfiltrated over 8.5 GB of data from the customer’s network.

Darktrace Cyber AI Analyst investigation highlighting the details of a data exfiltration attempt.
Figure 2: Darktrace Cyber AI Analyst investigation highlighting the details of a data exfiltration attempt.

Finally, Darktrace detected a user account within the customer’s Software-as-a-Service (SaaS) environment conducting several suspicious Office365 and AzureAD actions from a rare IP for the network, including uncommon file reads, creations and the deletion of a large number of files.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled on the network and the post-exploitation activity was able to progress until the customer was made aware of the attack by Darktrace’s SOC team. Had RESPOND been active and configured in autonomous response mode at the time of the attack, it would have been able to promptly contain the post-exploitation activity by blocking external connections, shutting down any C2 activity and preventing the download of suspicious files, blocking incoming traffic, and enforcing a learned ‘pattern of life’ on offending devices.

結論

Given the widespread use of Netscaler Gateway and Netscaler ADC, Citrix Bleed remains an impactful and potentially disruptive vulnerability that will likely continue to affect organizations who fail to address affected assets. In this instance, Darktrace demonstrated its ability to track and inhibit malicious activity stemming from Citrix Bleed exploitation, enabling the customer to identify affected devices and enact their own remediation.

Darktrace’s anomaly-based approach to threat detection allows it to identify such post-exploitation activity resulting from the exploitation of a vulnerability, regardless of whether it is a known CVE or a zero-day threat. Unlike traditional security tools that rely on existing threat intelligence and rules and signatures, Darktrace’s ability to identify the subtle deviations in a compromised device’s behavior gives it a unique advantage when it comes to identifying emerging threats.

Credit to Vivek Rajan, Cyber Analyst, Adam Potter, Cyber Analyst

付録

Darktrace モデルカバレッジ

Device / Suspicious SMB Scanning Activity

Device / ICMP Address Scan

Device / Possible SMB/NTLM Reconnaissance

Device / Network Scan

Device / SMB Lateral Movement

Device / Possible SMB/NTLM Brute Force

Device / Suspicious Network Scan Activity

User / New Admin Credentials on Server

Anomalous File / Internal::Unusual Internal EXE File Transfer

Compliance / SMB Drive Write

Device / New or Unusual Remote Command Execution

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Rare WinRM Incoming

Anomalous Connection / Unusual Admin SMB Session

Device / Unauthorised Device

User / New Admin Credentials on Server

Anomalous Server Activity / Outgoing from Server

Device / Long Agent Connection to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Device / New or Uncommon SMB Named Pipe

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Compliance / Remote Management Tool On Server

Device / Anomalous RDP Followed By Multiple Model Breaches

Device / SMB Session Brute Force (Admin)

Device / New User Agent

Compromise / Large Number of Suspicious Failed Connections

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Enhanced Unusual External Data Transfer

Device / Increased External Connectivity

Unusual Activity / Unusual External Data to New Endpoints

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Compliance / Possible Unencrypted Password File On Server

Anomalous Connection / Suspicious Read Write Ratio and Rare External

Device / Reverse DNS Sweep]

Unusual Activity / Possible RPC Recon Activity

Anomalous File / Internal::Executable Uploaded to DC

Compliance / SMB Version 1 Usage

Darktrace AI Analyst Incidents

Scanning of Multiple Devices

Suspicious Remote Service Control Activity

SMB Writes of Suspicious Files to Multiple Devices

Possible SSL Command and Control to Multiple Devices

Extensive Suspicious DCE-RPC Activity

Suspicious DCE-RPC Activity

Internal Downloads and External Uploads

Unusual External Data Transfer

Unusual External Data Transfer to Multiple Related Endpoints

MITRE ATT&CK マッピング

Technique – Tactic – ID – Sub technique of

Network Scanning – Reconnaissance - T1595 - T1595.002

Valid Accounts – Defense Evasion, Persistence, Privilege Escalation, Initial Access – T1078 – N/A

Remote Access Software – Command and Control – T1219 – N/A

Lateral Tool Transfer – Lateral Movement – T1570 – N/A

Data Transfers – Exfiltration – T1567 – T1567.002

Compressed Data – Exfiltration – T1030 – N/A

NTLM Brute Force – Brute Force – T1110 - T1110.001

AntiVirus Deflection – T1553 - NA

Ingress Tool Transfer   - COMMAND AND CONTROL - T1105 - NA

Indicators of Compromise (IoCs)

204.155.149[.]37 – IP – Possible Malicious Endpoint

199.80.53[.]177 – IP – Possible Malicious Endpoint

168.100.9[.]137 – IP – Malicious Endpoint

45.134.26[.]2 – IP – Malicious Endpoint

13.35.147[.]18 – IP – Likely Malicious Endpoint

13.248.193[.]251 – IP – Possible Malicious Endpoint

76.223.1[.]166 – IP – Possible Malicious Endpoint

179.60.147[.]10 – IP – Likely Malicious Endpoint

185.220.101[.]25 – IP – Likely Malicious Endpoint

141.255.167[.]250 – IP – Malicious Endpoint

106.71.177[.]68 – IP – Possible Malicious Endpoint

cat2.hbwrapper[.]com – Hostname – Likely Malicious Endpoint

aj1090[.]online – Hostname – Likely Malicious Endpoint

dc535[.]4sync[.]com – Hostname – Likely Malicious Endpoint

204.155.149[.]140 – IP - Likely Malicious Endpoint

204.155.149[.]132 – IP - Likely Malicious Endpoint

204.155.145[.]52 – IP - Likely Malicious Endpoint

204.155.145[.]49 – IP - Likely Malicious Endpoint

参考文献

  1. https://www.axios.com/2024/01/02/citrix-bleed-security-hacks-impact
  2. https://www.csoonline.com/article/1267774/hackers-steal-data-from-millions-of-xfinity-customers-via-citrix-bleed-vulnerability.html
  3. https://www.cybersecuritydive.com/news/citrixbleed-security-critical-vulnerability/702505/
  4. https://www.virustotal.com/gui/ip-address/168.100.9.137
  5. https://www.virustotal.com/gui/ip-address/45.134.26.2
  6. https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html
  7. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-325a
  8. https://www.file.net/process/m.exe.html
続きを読む
著者について
Vivek Rajan
Cyber Analyst

Blog

Eメール

How to Protect your Organization Against Microsoft Teams Phishing Attacks

Default blog imageDefault blog image
21
May 2024

The problem: Microsoft Teams phishing attacks are on the rise

Around 83% of Fortune 500 companies rely on Microsoft Office products and services1, with Microsoft Teams and Microsoft SharePoint in particular emerging as critical platforms to the business operations of the everyday workplace. Researchers across the threat landscape have begun to observe these legitimate services being leveraged more and more by malicious actors as an initial access method.

As Teams becomes a more prominent feature of the workplace many employees rely on it for daily internal and external communication, even surpassing email usage in some organizations. As Microsoft2 states, "Teams changes your relationship with email. When your whole group is working in Teams, it means you'll all get fewer emails. And you'll spend less time in your inbox, because you'll use Teams for more of your conversations."

However, Teams can be exploited to send targeted phishing messages to individuals either internally or externally, while appearing legitimate and safe. Users might receive an external message request from a Teams account claiming to be an IT support service or otherwise affiliated with the organization. Once a user has accepted, the threat actor can launch a social engineering campaign or deliver a malicious payload. As a primarily internal tool there is naturally less training and security awareness around Teams – due to the nature of the channel it is assumed to be a trusted source, meaning that social engineering is already one step ahead.

Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)
Figure 1: Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)

Microsoft Teams Phishing Examples

Microsoft has identified several major phishing attacks using Teams within the past year.

In July 2023, Microsoft announced that the threat actor known as Midnight Blizzard – identified by the United States as a Russian state-sponsored group – had launched a series of phishing campaigns via Teams with the aim of stealing user credentials. These attacks used previously compromised Microsoft 365 accounts and set up new domain names that impersonated legitimate IT support organizations. The threat actors then used social engineering tactics to trick targeted users into sharing their credentials via Teams, enabling them to access sensitive data.  

At a similar time, threat actor Storm-0324 was observed sending phishing lures via Teams containing links to malicious SharePoint-hosted files. The group targeted organizations that allow Teams users to interact and share files externally. Storm-0324’s goal is to gain initial access to hand over to other threat actors to pursue more dangerous follow-on attacks like ransomware.

Darktrace がMicrosoft Teamsのフィッシングを阻止する方法について、さらに詳しく知りたい方は、ブログをお読みください: 餌に喰いつくな:Darktrace Microsoft Teamsのフィッシング攻撃を阻止する方法

The market: Existing Microsoft Teams security solutions are insufficient

Microsoft’s native Teams security focuses on payloads, namely links and attachments, as the principal malicious component of any phishing. These payloads are relatively straightforward to detect with their experience in anti-virus, sandboxing, and IOCs. However, this approach is unable to intervene before the stage at which payloads are delivered, before the user even gets the chance to accept or deny an external message request. At the same time, it risks missing more subtle threats that don’t include attachments or links – like early stage phishing, which is pure social engineering – or completely new payloads.

Equally, the market offering for Teams security is limited. Security solutions available on the market are always payload-focused, rather than taking into account the content and context in which a link or attachment is sent. Answering questions like:

  • Does it make sense for these two accounts to speak to each other?
  • Are there any linguistic indicators of inducement?

Furthermore, they do not correlate with email to track threats across multiple communication environments which could signal a wider campaign. Effectively, other market solutions aren’t adding extra value – they are protecting against the same types of threats that Microsoft is already covering by default.

The other aspect of Teams security that native and market solutions fail to address is the account itself. As well as focusing on Teams threats, it’s important to analyze messages to understand the normal mode of communication for a user, and spot when a user’s Teams activity might signal account takeover.

The solution: How Darktrace protects Microsoft Teams against sophisticated threats

With its biggest update to Darktrace/Email ever, Darktrace now offers support for Microsoft Teams. With that, we are bringing the same AI philosophy that protects your email and accounts to your messaging environment.  

Our Self-Learning AI looks at content and context for every communication, whether that’s sent in an email or Teams message. It looks at actual user behavior, including language patterns, relationship history of sender and recipient, tone and payloads, to understand if a message poses a threat. This approach allows Darktrace to detect threats such as social engineering and payloadless attacks using visibility and forensic capabilities that Microsoft security doesn’t currently offer, as well as early symptoms of account compromise.  

Unlike market solutions, Darktrace doesn’t offer a siloed approach to Teams security. Data and signals from Teams are shared across email to inform detection, and also with the wider Darktrace ActiveAI security platform. By correlating information from email and Teams with network and apps security, Darktrace is able to better identify suspicious Teams activity and vice versa.  

Interested in the other ways Darktrace/Email augments threat detection? Read our latest blog on how improving the quality of end-user reporting can decrease the burden on the SOC. To find our more about Darktrace's enduring partnership with Microsoft, click here.

参考文献

[1] Essential Microsoft Office Statistics in 2024

[2] Microsoft blog, Microsoft Teams and email, living in harmony, 2024

続きを読む
著者について
Carlos Gray
Product Manager
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.