Blog
Threat Finds
RESPOND
Ransomware
AIがWastedLocker攻撃を阻止した方法







2020年5月に最初に発見されて以来、WastedLockerはかなりの知名度を獲得し、短期間に世界中のビジネスやサイバーセキュリティ企業の間で大問題となりました。WastedLockerは高度な難読化能力と高額な身代金要求で知られています。
‘Living off the Land’ (環境に寄生する)テクニックの利用により、WastedLocker攻撃は従来のセキュリティツールでは極めて検知が難しいものとなっています。最初の侵入から最後の実行までの滞留時間がますます短くなっているということは、人間の対応者だけでは損害が起こる前にこのランサムウェアを封じ込めることは難しいことを意味します。
このブログでは、12月に発生した米国の農業団体を標的としたWastedLocker侵入事例を詳しく見ていきます。DarktraceのAIはインシデントをリアルタイムに検知し調査しました。またDarktrace RESPONDであれば暗号化が開始される前にどのように自律的に対応しこの攻撃を阻止できたかを紹介します。
ランサムウェアの滞留時間が数日から数時間に短縮されるなかで、ますます多くのセキュリティチームはAIを使って侵入の最も早い兆候があった段階で脅威がエスカレートするのを阻止し、攻撃が夜間または週末に発生しても封じ込められるように対策しています。
攻撃はどのように進んだか

初期侵入
最初の感染は従業員が騙されて偽のブラウザアップデートをダウンロードしてしまったときに起こったものと見られます。Darktrace AIはこの組織内の約5,000台のデバイスの挙動を監視し、変化する「生活パターン」の理解を継続的に適応させていました。脅威の最初の兆候を検知したのは、仮想デスクトップ端末がこの組織にとって普通ではないと見なされた外部の接続先にHTTPおよびHTTPS接続を始めたときでした。以下のグラフは12月4日前後にゼロ号患者デバイスにおいて内部接続のスパイクがあったことを示しています。

偵察
最初の侵入からわずか11分後には偵察の試みが始まりました。ここでも、Darktraceはこのアクティビティに即座に気づき、135、139および445番ポートに対する不信なICMP pingスキャンおよび特定のアドレススキャンが検知されました。これは攻撃者がさらなるWindowsデバイスを標的として探したものと思われます。以下の図は、異常な数の失敗した接続によってスキャニングが検知された様子を示しています。

ラテラルムーブメント
攻撃者は実際の管理者認証情報を使ってドメインコントローラで認証を行い、SMBを使って新しいサービスコントロールを開始しました。Darktraceはこれを即座に検知し、異常な挙動として識別しました。


数時間後(未明のことでした)、攻撃者は一時的な管理者アカウント ‘tempadmin’ を使ってSMBを介して別のDomain Controllerに移動しました。Darktraceはこれを即座に検知しました。一時的な管理者アカウントを使って仮想デスクトップからDomain Controllerに接続することはきわめて異例だからです。

ロックとロード:WastedLockerによる攻撃の準備
ビーコニング活動中、攻撃者は内部偵察も行い、既にそこにあったツールを使って他の内部デバイスに対する管理者リモート接続を確立することに成功しました。その後ほどなく、疑わしい .csprojファイルがDarktraceによって検知され、さらに少なくとも4台のデバイスが同様のCommand and Control(C2)通信を始めました。
しかし、Darktraceのリアルタイム検知、およびCyber AI Analystによるインシデントの調査と報告が数分で行われたために、セキュリティチームはこの攻撃を封じ込め、感染したデバイスをオフラインにすることができました。
Cyber AI Analystによる自動調査
DarktraceのCyber AI Analystはすべての異常検知に対する自動調査を開始し、仮説を立て、見つかった結果を問い直し、正確な答えをマシンスピードで作成していきました。そのうえで、ハイレベルでわかりやすいインシデントサマリーをセキュリティチーム向けに生成しました。48時間でAI Analystが洗い出したセキュリティインシデントは6件だけでしたが、そのうちの3件は直接WastedLocker侵入に関連したものでした。

以下のスクリーンショットはVMWareデバイス(ゼロ号患者)が未知の通信先に繰り返し外部接続を行い、ネットワークをスキャンし新しい管理者認証情報を使っている状況が示されています。

Darktrace RESPOND: セキュリティチームに代わって対応するAI
世界初、そして唯一の自動遮断テクノロジーであるDarktrace RESPONDはこのケースではパッシブモードに設定されており、攻撃に対して積極的に介入しませんでした。しかしThreat Visualizerを確認すると、RESPONDが完全な自律モードに設定されていれば攻撃の初期段階で対処しセキュリティチームにとっての貴重な時間を稼ぐことができたであろうことがわかります。
このケースでは、最初の異常なSSL C2を検知(通信先の珍しさ、JA3の異変および頻度の分析に基づき)した後、RESPONDは443番ポートのC2トラフィックおよび135番ポートの並列内部スキャニングを即座にブロックすることを推奨していました。

ビーコニングがその後、bywce.payment.refinedwebs[.]com]に対して、HTTPで /updateSoftwareVersionにアクセスしようとすると、RESPONDは対応をエスカレートさせ、以降C2チャネルをブロックしました。

対応のためのツールのほとんどは、「もしXならばYを実行する」といった、ハードコードされた定義済みのルールに依存しています。これは偽陽性の発生につながり、不必要にデバイスをオフラインにして生産性を阻害する可能性があります。Darktrace RESPONDのアクションは程度に応じた、その組織に合ったものであり、前もって作成するものではありません。Darktrace RESPONDは何をブロックし、どの程度ブロックするかを侵入のコンテキストに基づいて自律的に選択し、人間がコマンドや応答のセットをうまくハードコードしておく必要はありません。
48時間内のあらゆる対応はこのインシデントに関係していました。RESPONDは侵入の期間中、他のことに対するアクションを取ろうとはしませんでした。脅威を封じ込めるための正確で的を絞ったアクションだけを実行し、ビジネスの他の部分は通常通り続けることができたはずです。インシデント発生中のアクションは全部で59件ありました。ただし以下に示された ‘Watched Domain Block’ は除いた数です。これはインシデント対処として事前対応的にC2通信をシャットダウンするのに使われるアクションです。

RESPONDはこれらのブロックを、ファイアウォール、NACLあるいはその他のネイティブインテグレーションを含めその組織にとって最適なインテグレーションにより実行できたはずです。RESPONDは関連するポートおよびプロトコルに対してこれらの悪意あるアクティビティを数時間にわたりブロックし、脅威アクターの侵入アクティビティに正確に的を絞って介入することによりさらなるエスカレーションを防ぎ、セキュリティチームに上空からの援護射撃を提供していたことでしょう。
WastedLockerランサムウェアを暗号化される前に阻止
この攻撃はシグネチャベースのツールをすり抜けるために多くの注意すべきTTP(Tools, Techniques and Procedures)を使っていました。Windows Management Instrumentation (WMI)、Powershell、ならびにデフォルトの管理者認証情報の使用など、‘Living off the Land’ (環境に寄生する)テクニックを利用していました。関与したC2ドメインのうち1つだけがOpen Source Intelligence Lists(OSINT)にふくまれており、他のドメインはその時点では未知のものでした。また、C2は正当なThawte SSL証明書で暗号化されていました。
こうした理由から、Darktraceが導入されていなかった場合、ランサムウェアはファイルの暗号化に成功し、この厳しい状況下でビジネスオペレーションを妨げ、場合によってはこの組織に莫大な金銭的損失と評判の毀損を招いていたかもしれません。
DarktraceのAIは脅威インテリジェンスに頼ることなく進行中のランサムウェアを検知し阻止します。今年はランサムウェアが勢いを強め、攻撃者達は絶え間なく新しい攻撃TTPを打ち出してきました。しかし、上記の脅威検知事例は、標的型の巧妙なランサムウェアであってもAIテクノロジーによって阻止できることを実証しています。
この脅威検知についての考察はDarktraceアナリストSigne Zaharka が協力しました。
Darktraceによるモデル検知:
- Compliance / High Priority Compliance Model Breach
- Compliance / Weak Active Directory Ticket Encryption
- Anomalous Connection / Cisco Umbrella Block Page
- Anomalous Server Activity / Anomalous External Activity from Critical Network Device
- Compliance / Default Credential Usage
- Compromise / Suspicious TLS Beaconing To Rare External
- Anomalous Server Activity / Rare External from Server
- Device / Lateral Movement and C2 Activity
- Compromise / SSL Beaconing to Rare Destination
- Device / New or Uncommon WMI Activity
- Compromise / Watched Domain
- Antigena / Network / External Threat / Antigena Watched Domain Block
- Compromise / HTTP Beaconing to Rare Destination
- Compromise / Slow Beaconing Activity To External Rare
- Device / Multiple Lateral Movement Model Breaches
- Compromise / High Volume of Connections with Beacon Score
- Device / Large Number of Model Breaches
- Compromise / Beaconing Activity To External Rare
- Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
- Anomalous Connection / New or Uncommon Service Control
- Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
- Compromise / SSL or HTTP Beacon
- Antigena / Network / External Threat / Antigena Suspicious Activity Block
- Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
- Compromise / Sustained SSL or HTTP Increase
- Unusual Activity / Unusual Internal Connections
- Device / ICMP Address Scan
Like this and want more?
More in this series
Blog
Inside the SOC
PurpleFox in a Henhouse: How Darktrace Hunted Down a Persistent and Dynamic Rootkit



Versatile Malware: PurpleFox
As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.
One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.
The Evolution of PurpleFox
The Original Strain
First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.
Subsequent Variants
Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.
The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.
Darktrace detection of PurpleFox
In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.
Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.
While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.
攻撃の概要

Initial Scanning over SMB
On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.
This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

特権昇格
The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.
Exploitation
Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.


There are a few MSIEXEC flags to note:
- /i : installs or configures a product
- /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required
Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Installation
On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.
The first connection was made with the URI ‘/test.png’. It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.
The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.


The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.
By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.
Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.
In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.



If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.
結論
The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indictors of compromise (IoCs), necessitating a more sophisticated approach to threat detection.
Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.
By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.
Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore
付録
Darktraceによるモデル検知
- Device / Increased External Connectivity
- Device / Large Number of Connections to New Endpoints
- Device / SMB Session Brute Force (Admin)
- Compliance / External Windows Communications
- Anomalous Connection / New or Uncommon Service Control
- Compromise / Unusual SVCCTL Activity
- Compromise / Rare Domain Pointing to Internal IP
- Anomalous File / Masqueraded File Transfer
RESPOND Models
- Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
- Antigena / Network / External Threat / Antigena Suspicious Activity Block
- Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
- Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
- Antigena / Network / External Threat / Antigena Suspicious File Block
- Antigena / Network / External Threat / Antigena File then New Outbound Block
IoC一覧
IoC - Type - Description
/C558B828.Png - URI - URI for Purple Fox Rootkit [4]
5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)
190.4.210[.]242 - IP - Purple Fox C2 Servers
218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)
180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)
103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
MITRE ATT&CK マッピング
Tactic - Technique
Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002
Resource Development - Obtain Capabilities: Malware T1588.001
Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001
Initial Access - Drive-by Compromise T1189
Defense Evasion - Masquerading T1036
Credential Access - Brute Force T1110
Discovery - Network Service Discovery T1046
Command and Control - Proxy: External Proxy T1090.002
参考文献
- https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
- https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
- https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
- https://www.foregenix.com/blog/an-overview-on-purple-fox
- https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
Blog
OT
$70 Million in Cyber Security Funding for Electric Cooperatives & Utilities



What is the Bipartisan Infrastructure Deal?
The Bipartisan Infrastructure Law passed by congress in 2021 aimed to upgrade power and infrastructure to deliver clean, reliable energy across the US to achieve zero-emissions. To date, the largest investment in clean energy, the deal will fund new programs to support the development and deployment of clean energy technology.
Why is it relevant to electric municipalities?
Section 40124 of the Bipartisan Infrastructure Law allocates $250 million over a 5-year period to create the Rural and Municipal Utility Cybersecurity (RMUC) Program to help electric cooperative, municipal, and small investor-owned utilities protect against, detect, respond to, and recover from cybersecurity threats.1 This act illuminates the value behind a full life-cycle approach to cyber security. Thus, finding a cyber security solution that can provide all aspects of security in one integrated platform would enhance the overall security posture and ease many of the challenges that arise with adopting multiple point solutions.
On November 16, 2023 the Office of Cybersecurity, Energy Security, and Emergency Response (CESER) released the Advanced Cybersecurity Technology (ACT) for electric utilities offering a $70 million funding opportunity that aims to enhance the cybersecurity posture of electric cooperative, municipal, and small investor-owned utilities.
Funding Details
10 projects will be funded with application submissions due November 29, 2023, 5:00 pm ET with $200,000 each in cash prizes in the following areas:
- Direct support for eligible utilities to make investments in cybersecurity technologies, tools, training, and improvements in utility processes and procedures;
- Funding to strengthen the peer-to-peer and not-for-profit cybersecurity technical assistance ecosystem currently serving eligible electric utilities; and
- Increasing access to cybersecurity technical assistance and training for eligible utilities with limited cybersecurity resources. 2
To submit for this award visit: https://www.herox.com/ACT1Prize
How can electric municipalities utilize the funding?
While the adoption of hybrid working patterns increase cloud and SaaS usage, the number of industrial IoT devices also continues to rise. The result is decrease in visibility for security teams and new entry points for attackers. Particularly for energy and utility organizations.
Electric cooperatives seeking to enhance their cyber security posture can aim to invest in cyber security tools that provide the following:
Compliance support: Consider finding an OT security solution that maps out how its solutions and features help your organization comply with relevant compliance mandates such as NIST, ISA, FERC, TSA, HIPAA, CIS Controls, and more.
Anomaly based detection: Siloed security solutions also fail to detect attacks that span
the entire organization. Anomaly-based detection enhances an organization’s cyber security posture by proactively defending against potential attacks and maintaining a comprehensive view of their attack surface.
Integration capabilities: Implementation of several point solutions that complete individual tasks runs the risk of increasing workloads for operators and creates additional challenges with compliance, budgeting, and technical support. Look for cyber security tools that integrate with your existing technologies.
Passive and active asset tracking: Active Identification offers accurate enumeration, real time updates, vulnerability assessment, asset validation while Passive Identification eliminates the risk of operational disruption, minimizes risk, does not generate additional network traffic. It would be ideal to find a security solution that can do both.
Can secure both IT and OT in unison: Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, a mature security posture for critical infrastructure would include a single solution for both IT and OT. Separate solutions for IT and OT present challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. These independent solutions also significantly increase operator workload and materially diminish risk mitigation efforts.
Darktrace/OT for Electric Cooperatives and Utilities
For smaller teams with just one or two dedicated employees, Darktrace’s Cyber AI Analyst and Investigation features allow end users to spend less time in the platform as it compiles critical incidents into comprehensive actionable event reports. AI Analyst brings all the information into a centralized view with incident reporting in natural language summaries and can be generated for compliance reports specific to regulatory requirements.
For larger teams, Darktrace alerts can be forwarded to 3rd party platforms such as a SIEM, where security team decision making is augmented. Additionally, executive reports and autonomous response reduce the alert fatigue generally associated with legacy tools. Most importantly, Darktrace’s unique understanding of normal allows security teams to detect zero-days and signatureless attacks regardless of the size of the organization and how alerts are consumed.
Key Benefits of Darktrace/OT
- Anomaly-based detection and real-time response
- Secures IT, OT, and IoT in unison
- Active and Passive Asset Identification
- Automated security reporting
- Attack surface management and vulnerability assessment
- Covers all levels of the Purdue Model
.png)
参考文献
