Blog

Inside the SOC

How Darktrace Antigena Thwarted Cobalt Strike Attack

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
Apr 2022
05
Apr 2022
Learn how Darktrace's Antigena technology intercepted and delayed a Cobalt Strike intrusion. Discover more cybersecurity news and analyses on Darktrace's blog.

In December 2021 several CVEs[1] were issued for the Log4j vulnerabilities that sent security teams into a global panic. Threat actors are now continuously scanning external infrastructure for evidence of the vulnerability to deploy crypto-mining malware.[2] However, through December ‘21 – February ‘22, it was ransomware groups that seized the initiative.

Compromise

In January 2022, a Darktrace customer left an external-facing VMware server unpatched allowing Cobalt Strike to be successfully installed. Several IoCs indicate that Cuba Ransomware operators were behind the attack. Thanks to the Darktrace SOC service, the customer was notified of the active threat on their network, and Antigena’s Autonomous Response was able to keep the attackers at bay before encryption events took place.

Initially the VMware server breached two models relating to an anomalous script download and a new user agent both connecting via HTTP. As referenced in an earlier Darktrace blog, both of these models had been seen in previous Log4j exploits. As with all Darktrace models however, the model deck is not designed to detect only one exploit, infection variant, or APT.

Figure 1: Darktrace models breaching due to the malicious script download

Analyst investigation

A PCAP of the downloaded script showed that it contained heavily obfuscated JavaScript. After an OSINT investigation a similar script was uncovered which likely breached the same Yara rules.

Figure 2: PCAP of the Initial HTTP GET request for the Windows Script component

Figure 3: PCAP of the initial HTTP response containing obfuscated JavaScript

Figure 4: A similar script that has been observed installing additional payloads after an initial infection[3]

While not an exact match, this de-obfuscated code shared similarities to those seen when downloading other banking trojans.

Having identified on the Darktrace UI that this was a VMware server, the analyst isolated the incoming external connections to the server shortly prior to the HTTP GET requests and was able to find an IP address associated with Log4j exploit attempts.

Figure 5: Advanced Search logs showing incoming SSL connections from an IP address linked to Log4j exploits

Through Advanced Search the analyst identified spikes shortly prior and immediately after the download. This suggested the files were downloaded and executed by exploiting the Log4j vulnerability.

Antigena response

Figure 6: AI Analyst reveals both the script downloads and the unusual user agent associated with the connections

Figure 7: Antigena blocked all further connections to these endpoints following the downloads

Cobalt Strike

Cobalt Strike is a popular tool for threat actors as it can be used to perform a swathe of MITRE ATT&CK techniques. In this case the threat actor attempted command and control tactics to pivot through the network, however, Antigena responded promptly when the malware attempted to communicate with external infrastructure.

On Wednesday January 26, the DNS beacon attempted to connect to malicious infrastructure. Antigena responded, and a Darktrace SOC analyst issued an alert.

Figure 8: A Darktrace model detected the suspicious DNS requests and Antigena issued a response

The attacker changed their strategy by switching to a different server “bluetechsupply[.]com” and started issuing commands over TLS. Again, Darktrace detected these connections and AI Analyst reported on the incident (Figure 9, below). OSINT sources subsequently indicated that this destination is affiliated with Cobalt Strike and was only registered 14 days prior to this incident.

Figure 9: AI Analyst summary of the suspicious beaconing activity

Simultaneous to these connections, the device scanned multiple internal devices via an ICMP scan and then scanned the domain controller over key TCP ports including 139 and 445 (SMB). This was followed by an attempt to write an executable file to the domain controller. While Antigena intervened in the file write, another Darktrace SOC analyst was issuing an alert due to the escalation in activity.

Figure 10: AI Analyst summary of the .dll file that Antigena intercepted to the Windows/temp directory of the domain controller

Following the latest round of Antigena blocks, the threat actor attempted to change methods again. The VMware server utilised the Remote Access Tool/Trojan NetSupport Manager in an attempt to install further malware.

Figure 11: Darktrace reveals the attacker changing tactics

Despite this escalation, Darktrace yet again blocked the connection.

Perhaps due to an inability to connect to C2 infrastructure, the attack stopped in its tracks for around 12 hours. Thanks to Antigena and the Darktrace SOC team, the security team had been afforded time to remediate and recover from the active threat in their network. Interestingly, Darktrace detected a final attempt at pivoting from the machine, with an unusual PowerShell Win-RM connection to an internal machine. The modern Win-RM protocol typically utilises port 5985 for HTTP connections however pre-Windows 7 machines may use Windows 7 indicating this server was running an old OS.

Figure 12: Darktrace detects unusual PowerShell usage

Cuba Ransomware

While no active encryption appears to have taken place for this customer, a range of IoCs were identified which indicated that the threat actor was the group being tracked as UNC2596, the operators of Cuba Ransomware.[4]

These IoCs include: one of the initially dropped files (komar2.ps1,[5] revealed by AI Analyst in Figure 6), use of the NetSupport RAT,[6] and Cobalt Strike beaconing.[7] These were implemented to maintain persistence and move laterally across the network.

Cuba Ransomware operators prefer to exfiltrate data to their beacon infrastructure rather than using cloud storage providers, however no evidence of upload activity was observed on the customer’s network.

まとめの考察

Unpatched, external-facing VMware servers vulnerable to the Log4j exploit are actively being targeted by threat actors with the aim of ransomware detonation. Without using rules or signatures, Darktrace was able to detect all stages of the compromise. While Antigena delayed the attack, forcing the threat actor to change C2 servers constantly, the Darktrace analyst team relayed their findings to the security team who were able to remediate the compromised machines and prevent a final ransomware payload from detonating.

For Darktrace customers who want to find out more about Cobalt Strike, refer here for an exclusive supplement to this blog.

付録

Darktraceによるモデル検知

最初の侵入:

  • Device / New User Agent To Internal Server
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Experimental / Large Number of Suspicious Successful Connections

Breaches from Critical Devices / DC:

  • Device / Large Number of Model Breaches
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Device / SMB Lateral Movement
  • Experimental / Unusual SMB Script Write V2
  • Compliance / High Priority Compliance Model Breach
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Experimental / Possible Cobalt Strike Server IP V2

ラテラルムーブメント:

  • Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Executable Uploaded to DC
  • Experimental / Large Number of Suspicious Failed Connections
  • Compromise / Suspicious Beaconing Behaviour
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Anomalous Connection / High Volume of Connections to Rare Domain
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Network Scan Activity:

  • Device / Suspicious SMB Scanning Activity
  • Experimental / Network Scan V2
  • Device / ICMP Address Scan
  • Experimental / Possible SMB Scanning Activity
  • Experimental / Possible SMB Scanning Activity V2
  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Device / Network Scan
  • Compromise / DNS / Possible DNS Beacon
  • Device / Internet Facing Device with High Priority Alert
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

DNS / Cobalt Strike Activity:

  • Experimental / Possible Cobalt Strike Server IP
  • Experimental / Possible Cobalt Strike Server IP V2
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Script from Rare External Location

観測されたMITRE ATT&CKテクニック

IoCs

Thanks to Brianna Leddy, Sam Lister and Marco Alanis for their contributions.

脚注

1.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44530
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45046
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4104

2. https://www.toolbox.com/it-security/threat-reports/news/log4j-vulnerabilities-exploitation-attempts

3. https://twitter.com/ItsReallyNick/status/899845845906071553

4. https://www.mandiant.com/resources/unc2596-cuba-ransomware

5. https://www.ic3.gov/Media/News/2021/211203-2.pdf

6. https://threatpost.com/microsoft-exchange-exploited-cuba-ransomware/178665/

7. https://www.bleepingcomputer.com/news/security/microsoft-exchange-servers-hacked-to-deploy-cuba-ransomware/

8. https://gist.github.com/blotus/f87ed46718bfdc634c9081110d243166

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Dylan Evans
Book a 1-1 meeting with one of our experts
この記事を共有
USE CASES
該当する項目はありません。
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

Inside the SOC

Stemming the Citrix Bleed Vulnerability with Darktrace’s ActiveAI Platform

Default blog imageDefault blog image
28
May 2024

What is Citrix Bleed?

Since August 2023, cyber threat actors have been actively exploiting one of the most significant critical vulnerabilities disclosed in recent years: Citrix Bleed. Citrix Bleed, also known as CVE-2023-4966, remained undiscovered and even unpatched for several months, resulting in a wide range of security incidents across business and government sectors [1].

How does Citrix Bleed vulnerability work?

The vulnerability, which impacts the Citrix Netscaler Gateway and Netscaler ADC products, allows for outside parties to hijack legitimate user sessions, thereby bypassing password and multifactor authentication (MFA) requirements.

When used as a means of initial network access, the vulnerability has resulted in the exfiltration of sensitive data, as in the case of Xfinity, and even the deployment of ransomware variants including Lockbit [2]. Although Citrix has released a patch to address the vulnerability, slow patching procedures and the widespread use of these products has resulted in the continuing exploitation of Citrix Bleed into 2024 [3].

How Does Darktrace Handle Citrix Bleed?

Darktrace has demonstrated its proficiency in handling the exploitation of Citrix Bleed since it was disclosed back in 2023; its anomaly-based approach allows it to efficiently identify and inhibit post-exploitation activity as soon as it surfaces.  Rather than relying upon traditional rules and signatures, Darktrace’s Self-Learning AI enables it to understand the subtle deviations in a device’s behavior that would indicate an emerging compromise, thus allowing it to detect anomalous activity related to the exploitation of Citrix Bleed.

In late 2023, Darktrace identified an instance of Citrix Bleed exploitation on a customer network. As this customer had subscribed to the Proactive Threat Notification (PTN) service, the suspicious network activity surrounding the compromise was escalated to Darktrace’s Security Operation Center (SOC) for triage and investigation by Darktrace Analysts, who then alerted the customer’s security team to the incident.

Darktrace’s Coverage

Initial Access and Beaconing of Citrix Bleed

Darktrace’s initial detection of indicators of compromise (IoCs) associated with the exploitation of Citrix Bleed actually came a few days prior to the SOC alert, with unusual external connectivity observed from a critical server. The suspicious connection in question, a SSH connection to the rare external IP 168.100.9[.]137, lasted several hours and utilized the Windows PuTTY client. Darktrace also identified an additional suspicious IP, namely 45.134.26[.]2, attempting to contact the server. Both rare endpoints had been linked with the exploitation of the Citrix Bleed vulnerability by multiple open-source intelligence (OSINT) vendors [4] [5].

Darktrace model alert highlighting an affected device making an unusual SSH connection to 168.100.9[.]137 via port 22.
Figure 1: Darktrace model alert highlighting an affected device making an unusual SSH connection to 168.100.9[.]137 via port 22.

As Darktrace is designed to identify network-level anomalies, rather than monitor edge infrastructure, the initial exploitation via the typical HTTP buffer overflow associated with this vulnerability fell outside the scope of Darktrace’s visibility. However, the aforementioned suspicious connectivity likely constituted initial access and beaconing activity following the successful exploitation of Citrix Bleed.

Command and Control (C2) and Payload Download

Around the same time, Darktrace also detected other devices on the customer’s network conducting external connectivity to various endpoints associated with remote management and IT services, including Action1, ScreenConnect and Fixme IT. Additionally, Darktrace observed devices downloading suspicious executable files, including “tniwinagent.exe”, which is associated with the tool Total Network Inventory. While this tool is typically used for auditing and inventory management purposes, it could also be leveraged by attackers for the purpose of lateral movement.

防衛回避

In the days surrounding this compromise, Darktrace observed multiple devices engaging in potential defense evasion tactics using the ScreenConnect and Fixme IT services. Although ScreenConnect is a legitimate remote management tool, it has also been used by threat actors to carry out C2 communication [6]. ScreenConnect itself was the subject of a separate critical vulnerability which Darktrace investigated in early 2024. Meanwhile, CISA observed that domains associated with Fixme It (“fixme[.]it”) have been used by threat actors attempting to exploit the Citrix Bleed vulnerability [7].

Reconnaissance and Lateral Movement

A few days after the detection of the initial beaconing communication, Darktrace identified several devices on the customer’s network carrying out reconnaissance and lateral movement activity. This included SMB writes of “PSEXESVC.exe”, network scanning, DCE-RPC binds of numerous internal devices to IPC$ shares and the transfer of compromise-related tools. It was at this point that Darktrace’s Self-Learning AI deemed the activity to be likely indicative of an ongoing compromise and several Enhanced Monitoring models alerted, triggering the aforementioned PTNs and investigation by Darktrace’s SOC.

Darktrace observed a server on the network initiating a wide range of connections to more than 600 internal IPs across several critical ports, suggesting port scanning, as well as conducting unexpected DCE-RPC service control (svcctl) activity on multiple internal devices, amongst them domain controllers. Additionally, several binds to server service (srvsvc) and security account manager (samr) endpoints via IPC$ shares on destination devices were detected, indicating further reconnaissance activity. The querying of these endpoints was also observed through RPC commands to enumerate services running on the device, as well as Security Account Manager (SAM) accounts.  

Darktrace also identified devices performing SMB writes of the WinRAR data compression tool, in what likely represented preparation for the compression of data prior to data exfiltration. Further SMB file writes were observed around this time including PSEXESVC.exe, which was ultimately used by attackers to conduct remote code execution, and one device was observed making widespread failed NTLM authentication attempts on the network, indicating NTLM brute-forcing. Darktrace observed several devices using administrative credentials to carry out the above activity.

In addition to the transfer of tools and executables via SMB, Darktrace also identified numerous devices deleting files through SMB around this time. In one example, an MSI file associated with the patch management and remediation service, Action1, was deleted by an attacker. This legitimate security tool, if leveraged by attackers, could be used to uncover additional vulnerabilities on target networks.

A server on the customer’s network was also observed writing the file “m.exe” to multiple internal devices. OSINT investigation into the executable indicated that it could be a malicious tool used to prevent antivirus programs from launching or running on a network [8].

Impact and Data Exfiltration

Following the initial steps of the breach chain, Darktrace observed numerous devices on the customer’s network engaging in data exfiltration and impact events, resulting in additional PTN alerts and a SOC investigation into data egress. Specifically, two servers on the network proceeded to read and download large volumes of data via SMB from multiple internal devices over the course of a few hours. These hosts sent large outbound volumes of data to MEGA file storage sites using TLS/SSL over port 443. Darktrace also identified the use of additional file storage services during this exfiltration event, including 4sync, file[.]io, and easyupload[.]io. In total the threat actor exfiltrated over 8.5 GB of data from the customer’s network.

Darktrace Cyber AI Analyst investigation highlighting the details of a data exfiltration attempt.
Figure 2: Darktrace Cyber AI Analyst investigation highlighting the details of a data exfiltration attempt.

Finally, Darktrace detected a user account within the customer’s Software-as-a-Service (SaaS) environment conducting several suspicious Office365 and AzureAD actions from a rare IP for the network, including uncommon file reads, creations and the deletion of a large number of files.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled on the network and the post-exploitation activity was able to progress until the customer was made aware of the attack by Darktrace’s SOC team. Had RESPOND been active and configured in autonomous response mode at the time of the attack, it would have been able to promptly contain the post-exploitation activity by blocking external connections, shutting down any C2 activity and preventing the download of suspicious files, blocking incoming traffic, and enforcing a learned ‘pattern of life’ on offending devices.

結論

Given the widespread use of Netscaler Gateway and Netscaler ADC, Citrix Bleed remains an impactful and potentially disruptive vulnerability that will likely continue to affect organizations who fail to address affected assets. In this instance, Darktrace demonstrated its ability to track and inhibit malicious activity stemming from Citrix Bleed exploitation, enabling the customer to identify affected devices and enact their own remediation.

Darktrace’s anomaly-based approach to threat detection allows it to identify such post-exploitation activity resulting from the exploitation of a vulnerability, regardless of whether it is a known CVE or a zero-day threat. Unlike traditional security tools that rely on existing threat intelligence and rules and signatures, Darktrace’s ability to identify the subtle deviations in a compromised device’s behavior gives it a unique advantage when it comes to identifying emerging threats.

Credit to Vivek Rajan, Cyber Analyst, Adam Potter, Cyber Analyst

付録

Darktrace モデルカバレッジ

Device / Suspicious SMB Scanning Activity

Device / ICMP Address Scan

Device / Possible SMB/NTLM Reconnaissance

Device / Network Scan

Device / SMB Lateral Movement

Device / Possible SMB/NTLM Brute Force

Device / Suspicious Network Scan Activity

User / New Admin Credentials on Server

Anomalous File / Internal::Unusual Internal EXE File Transfer

Compliance / SMB Drive Write

Device / New or Unusual Remote Command Execution

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Rare WinRM Incoming

Anomalous Connection / Unusual Admin SMB Session

Device / Unauthorised Device

User / New Admin Credentials on Server

Anomalous Server Activity / Outgoing from Server

Device / Long Agent Connection to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Device / New or Uncommon SMB Named Pipe

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Compliance / Remote Management Tool On Server

Device / Anomalous RDP Followed By Multiple Model Breaches

Device / SMB Session Brute Force (Admin)

Device / New User Agent

Compromise / Large Number of Suspicious Failed Connections

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Enhanced Unusual External Data Transfer

Device / Increased External Connectivity

Unusual Activity / Unusual External Data to New Endpoints

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Compliance / Possible Unencrypted Password File On Server

Anomalous Connection / Suspicious Read Write Ratio and Rare External

Device / Reverse DNS Sweep]

Unusual Activity / Possible RPC Recon Activity

Anomalous File / Internal::Executable Uploaded to DC

Compliance / SMB Version 1 Usage

Darktrace AI Analyst Incidents

Scanning of Multiple Devices

Suspicious Remote Service Control Activity

SMB Writes of Suspicious Files to Multiple Devices

Possible SSL Command and Control to Multiple Devices

Extensive Suspicious DCE-RPC Activity

Suspicious DCE-RPC Activity

Internal Downloads and External Uploads

Unusual External Data Transfer

Unusual External Data Transfer to Multiple Related Endpoints

MITRE ATT&CK マッピング

Technique – Tactic – ID – Sub technique of

Network Scanning – Reconnaissance - T1595 - T1595.002

Valid Accounts – Defense Evasion, Persistence, Privilege Escalation, Initial Access – T1078 – N/A

Remote Access Software – Command and Control – T1219 – N/A

Lateral Tool Transfer – Lateral Movement – T1570 – N/A

Data Transfers – Exfiltration – T1567 – T1567.002

Compressed Data – Exfiltration – T1030 – N/A

NTLM Brute Force – Brute Force – T1110 - T1110.001

AntiVirus Deflection – T1553 - NA

Ingress Tool Transfer   - COMMAND AND CONTROL - T1105 - NA

Indicators of Compromise (IoCs)

204.155.149[.]37 – IP – Possible Malicious Endpoint

199.80.53[.]177 – IP – Possible Malicious Endpoint

168.100.9[.]137 – IP – Malicious Endpoint

45.134.26[.]2 – IP – Malicious Endpoint

13.35.147[.]18 – IP – Likely Malicious Endpoint

13.248.193[.]251 – IP – Possible Malicious Endpoint

76.223.1[.]166 – IP – Possible Malicious Endpoint

179.60.147[.]10 – IP – Likely Malicious Endpoint

185.220.101[.]25 – IP – Likely Malicious Endpoint

141.255.167[.]250 – IP – Malicious Endpoint

106.71.177[.]68 – IP – Possible Malicious Endpoint

cat2.hbwrapper[.]com – Hostname – Likely Malicious Endpoint

aj1090[.]online – Hostname – Likely Malicious Endpoint

dc535[.]4sync[.]com – Hostname – Likely Malicious Endpoint

204.155.149[.]140 – IP - Likely Malicious Endpoint

204.155.149[.]132 – IP - Likely Malicious Endpoint

204.155.145[.]52 – IP - Likely Malicious Endpoint

204.155.145[.]49 – IP - Likely Malicious Endpoint

参考文献

  1. https://www.axios.com/2024/01/02/citrix-bleed-security-hacks-impact
  2. https://www.csoonline.com/article/1267774/hackers-steal-data-from-millions-of-xfinity-customers-via-citrix-bleed-vulnerability.html
  3. https://www.cybersecuritydive.com/news/citrixbleed-security-critical-vulnerability/702505/
  4. https://www.virustotal.com/gui/ip-address/168.100.9.137
  5. https://www.virustotal.com/gui/ip-address/45.134.26.2
  6. https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html
  7. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-325a
  8. https://www.file.net/process/m.exe.html
続きを読む
著者について
Vivek Rajan
Cyber Analyst

Blog

Eメール

How to Protect your Organization Against Microsoft Teams Phishing Attacks

Default blog imageDefault blog image
21
May 2024

The problem: Microsoft Teams phishing attacks are on the rise

Around 83% of Fortune 500 companies rely on Microsoft Office products and services1, with Microsoft Teams and Microsoft SharePoint in particular emerging as critical platforms to the business operations of the everyday workplace. Researchers across the threat landscape have begun to observe these legitimate services being leveraged more and more by malicious actors as an initial access method.

As Teams becomes a more prominent feature of the workplace many employees rely on it for daily internal and external communication, even surpassing email usage in some organizations. As Microsoft2 states, "Teams changes your relationship with email. When your whole group is working in Teams, it means you'll all get fewer emails. And you'll spend less time in your inbox, because you'll use Teams for more of your conversations."

However, Teams can be exploited to send targeted phishing messages to individuals either internally or externally, while appearing legitimate and safe. Users might receive an external message request from a Teams account claiming to be an IT support service or otherwise affiliated with the organization. Once a user has accepted, the threat actor can launch a social engineering campaign or deliver a malicious payload. As a primarily internal tool there is naturally less training and security awareness around Teams – due to the nature of the channel it is assumed to be a trusted source, meaning that social engineering is already one step ahead.

Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)
Figure 1: Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)

Microsoft Teams Phishing Examples

Microsoft has identified several major phishing attacks using Teams within the past year.

In July 2023, Microsoft announced that the threat actor known as Midnight Blizzard – identified by the United States as a Russian state-sponsored group – had launched a series of phishing campaigns via Teams with the aim of stealing user credentials. These attacks used previously compromised Microsoft 365 accounts and set up new domain names that impersonated legitimate IT support organizations. The threat actors then used social engineering tactics to trick targeted users into sharing their credentials via Teams, enabling them to access sensitive data.  

At a similar time, threat actor Storm-0324 was observed sending phishing lures via Teams containing links to malicious SharePoint-hosted files. The group targeted organizations that allow Teams users to interact and share files externally. Storm-0324’s goal is to gain initial access to hand over to other threat actors to pursue more dangerous follow-on attacks like ransomware.

Darktrace がMicrosoft Teamsのフィッシングを阻止する方法について、さらに詳しく知りたい方は、ブログをお読みください: 餌に喰いつくな:Darktrace Microsoft Teamsのフィッシング攻撃を阻止する方法

The market: Existing Microsoft Teams security solutions are insufficient

Microsoft’s native Teams security focuses on payloads, namely links and attachments, as the principal malicious component of any phishing. These payloads are relatively straightforward to detect with their experience in anti-virus, sandboxing, and IOCs. However, this approach is unable to intervene before the stage at which payloads are delivered, before the user even gets the chance to accept or deny an external message request. At the same time, it risks missing more subtle threats that don’t include attachments or links – like early stage phishing, which is pure social engineering – or completely new payloads.

Equally, the market offering for Teams security is limited. Security solutions available on the market are always payload-focused, rather than taking into account the content and context in which a link or attachment is sent. Answering questions like:

  • Does it make sense for these two accounts to speak to each other?
  • Are there any linguistic indicators of inducement?

Furthermore, they do not correlate with email to track threats across multiple communication environments which could signal a wider campaign. Effectively, other market solutions aren’t adding extra value – they are protecting against the same types of threats that Microsoft is already covering by default.

The other aspect of Teams security that native and market solutions fail to address is the account itself. As well as focusing on Teams threats, it’s important to analyze messages to understand the normal mode of communication for a user, and spot when a user’s Teams activity might signal account takeover.

The solution: How Darktrace protects Microsoft Teams against sophisticated threats

With its biggest update to Darktrace/Email ever, Darktrace now offers support for Microsoft Teams. With that, we are bringing the same AI philosophy that protects your email and accounts to your messaging environment.  

Our Self-Learning AI looks at content and context for every communication, whether that’s sent in an email or Teams message. It looks at actual user behavior, including language patterns, relationship history of sender and recipient, tone and payloads, to understand if a message poses a threat. This approach allows Darktrace to detect threats such as social engineering and payloadless attacks using visibility and forensic capabilities that Microsoft security doesn’t currently offer, as well as early symptoms of account compromise.  

Unlike market solutions, Darktrace doesn’t offer a siloed approach to Teams security. Data and signals from Teams are shared across email to inform detection, and also with the wider Darktrace ActiveAI security platform. By correlating information from email and Teams with network and apps security, Darktrace is able to better identify suspicious Teams activity and vice versa.  

Interested in the other ways Darktrace/Email augments threat detection? Read our latest blog on how improving the quality of end-user reporting can decrease the burden on the SOC. To find our more about Darktrace's enduring partnership with Microsoft, click here.

参考文献

[1] Essential Microsoft Office Statistics in 2024

[2] Microsoft blog, Microsoft Teams and email, living in harmony, 2024

続きを読む
著者について
Carlos Gray
Product Manager
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.