Blog

該当する項目はありません。

すべてはタイミング:インシデント対応を最適化してリソースを節約する方法

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Aug 2023
02
Aug 2023
インシデントに対応する場合、タイミングが悪いとリソースを浪費してしまいます。そして、従来のインシデント対応戦略では、適切なタイミングを計ることが非常に困難でした。Darktrace HEAL を利用することで、企業はより迅速かつ効率的に重要なイベントを特定して対処できるようになり、セキュリティチームの時間、費用、労力を節約することができます。

サイバーインシデント対応計画でバランスを取る 

インシデントに対応する場合、タイミングが悪いとリソースを浪費します。そして、従来のインシデント対応戦略と従来の検知ツールの組み合わせでは、適切なタイミングを計ることが非常に難しくなります。 

組織が復旧作業をあまりに早く開始しすぎると、良性であることが判明した事象に対処してしまう可能性があり、これはリソースの浪費につながります。 

組織が復旧を始めるのが遅すぎると、攻撃を継続させ放置することになり、問題がより広範で複雑なものになる可能性があります。

その中間には、セキュリティチームが良性の事象に時間を浪費することなく、インシデントがエスカレートしすぎない最適な段階があります。しかし、特に検知ツールが誤検知を起こしやすく、より洗練された攻撃や斬新な攻撃がシグネチャベースのツールのレーダーの下を素通りすることが多い場合、このスイートスポットを見極めるのは難しいです。 

これは、セキュリティチームがインシデント対応を開始するまでの経過時間をX軸に、必要なリソースの量をY軸にとり、グラフ化することができます。非イベントの発生頻度が高いため、セキュリティチームが良性であることが判明した多くのイベントに対応するにつれてリソースが食いつぶされるため、ごく初期にスパイクが発生していることに気づくでしょう。

図1:インシデント対応は、早すぎず遅すぎず実施することで最大の効率を発揮します(グラフはイメージです)


インシデントに対応するのが遅すぎるという問題は、静的なインシデント対応プレイブックによって高まっています。インシデント対応プレイブックは、一般的な攻撃の種類に対応した「一律の」フォーマットで作成されることが多く、ランサムウェア用のものや、DDoS攻撃用のものなどがあります。これらは、攻撃の根絶、感染した資産の修復、証拠の収集、社内コミュニケーション、そして最終的な復旧に必要なステップの概要を示しています。 

このようなプレイブックは監査人やコンプライアンス要件を満たすのに役立ちますが、現実の世界ではあまり使用されません。なぜなら、攻撃の現実はプレイブックで設定された一般的なパラメータと完全に一致することはないからです。プレイブックは静的なものである一方、企業やそれを狙う脅威は常に進化しています。これは、攻撃者が大規模で洗練された革新的な攻撃を実行することを可能にする生成AIの台頭により、特に顕著になっています。 

言い換えれば、従来のプレイブックはすべて、書かれたその日に時代遅れになるということです。攻撃とプレイブックの対応プランのミスマッチにより、人間の注意はステップバイステップの指示に従うことからリアルタイムの意思決定に移るため、そのギャップを埋めるために人間のチームに負担がかかります。ストレスの多い状況下で、多くの場合、限られた情報しかない中で事象全体を総合的に判断することを余儀なくされるため、プレイブックからますます逸脱するようになり、プレイブックとの関連性が薄れていくのです。 

本物のセキュリティインシデントだけに対応し、そのインシデントが危機的状況になる前に対策を開始することで、セキュリティチームは必要なリソースを削減することができます。しかし、これは、正確な検知能力と、必要な情報をすべて提供する調査ツールがあればこそ可能になることです。 

より迅速で効率的なインシデント対応にAIを活用 

Darktrace HEAL™を使用することで、防御者は最適な時間帯に、より早くインシデント対応を開始することができます。AIテクノロジーは、お客様のビジネスデータからスピードとスケールで学習し、リアルタイムでイベントを特定、調査し、どのような活動に注意が必要かを判断します。DETECT のアラートが発報する個々の異常なイベントの点と点を自動的に結びつけ、より広範なセキュリティインシデントを探すことで、HEALのリカバリ機能の対象とします。

HEALは、このデータを活用することで、セキュリティチームが新たに発生した重要なインシデントに早期に対処できるようにするとともに、無関係なイベントに費やされる不要な時間と労力を排除します。インシデント対応を開始するための閾値を下げ、自動化を活用することで、組織はより早く、より多くの情報に基づいた意思決定を行うことができ、その結果、迅速かつ少ないリソースで復旧を行うことができます。

下記のグラフには2つのことが発生しています。まず、ツールの改善により、曲線全体が下方にシフトしています。セキュリティチームは、自動化、AIが生成する特注のプレイブック、および統合の恩恵を受けるようになり、その結果、必要なリソースの量は曲線のすべての段階で低下しています。また、不正確な検知と厳しいインシデント対応アクティブ化ポリシーのために、インシデント対応担当者がこれまで到達できなかったスイートスポットが達成可能になっています。

図2:Darktrace HEAL により、インシデントレスポンスはより早く、より少ないリソースで実施できます(グラフはイメージです)


オーダーメイドのプレイブックが復旧を加速させる

HEAL は、復旧プロセスのいくつかのステップを自動化し、インシデント対応の速度を加速させます。AIが生成するオーダーメイドのインシデント対応プレイブックを作成し、進化する組織理解を活用して、特定のインシデントとその環境に合わせた復旧手順を決定します。例えば、クラウドの移行では、従来の静的なプレイブックでは考慮されない新しいアーキテクチャが導入される可能性がありますが、HEALでは考慮されます。 

これらのオーダーメイドのプレイブックは、組織固有のデータに基づいて学習し、ビジネスに対する理解を継続的に更新する自己学習型AIを使用することで、ビジネスと脅威の状況の両方の変化に対応することができます。このカスタマイズされたAI学習の結果、これらのプレイブックは、インシデント発生中および発生後に適切なアクションを取り、過剰に対応することなく、より効率的なインシデント対応を促進することができます。

AIはまた、さらなる被害状況や、攻撃がピボットやエントリーポイントとして特定の資産にどれだけ依存しているか、RESPONDが資産の不要な活動を一時的に封じ込めたかなどの種々の要因に基づいて、修復アクションの順序に優先順位を付けます。

HEALの特注プレイブックは、迅速な根絶と復旧が必要なクリティカルなインシデントの場合にも、新たに発生したインシデントの日常的なトリアージの場合にも適用されます。オーダーメイドのプレイブックを使用することで、組織はコンプライアンスに配慮しつつ、現実的で実用的な価値を得ることができます。 

インシデント対応をシンプルに

従来、組織はインシデントへの対応が早すぎたり遅すぎたりするスイートスポットを見つけるのに苦労し、リソースを浪費したり、評判や財務上の問題に直面したりする可能性を高めてきました。 

HEALを使用することで、組織はより効果的に重要なイベントを特定し、対処することができます。このAIテクノロジーは、強化された検知機能を駆使して、重要なインシデントを早期に発見し、無関係な事象に時間と労力を費やすことはありません。AIが作成したオーダーメイドのプレイブックを活用することで、適用可能な復旧計画を確保し、復旧をさらに効率化します。 

インシデントレスポンスのタイミングを調整することで、HEALは正確な検知と迅速な復旧を行い、セキュリティチームの時間、コスト、労力を節約します。

HEAL は、Darktraceの「サイバーAIループ」の最終段階であり、攻撃ライフサイクルの各段階で防御者を支援する相互接続されたセキュリティエコシステムの一部を構成します。AI出力は、Darktrace PREVENT™、Darktrace DETECT™、Darktrace RESPOND™、そしてHEAL の各製品間を流れ、継続的かつ自律的にセキュリティを強化するものです。 

図3:サイバーAIループは、DarktraceのAI出力を共有することで互いの製品が増幅し合う好循環をもたらす
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Dan Fein
VP, Product

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Book a 1-1 meeting with one of our experts
この記事を共有
USE CASES
該当する項目はありません。
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

Inside the SOC

A Thorn in Attackers’ Sides: How Darktrace Uncovered a CACTUS Ransomware Infection

Default blog imageDefault blog image
24
Apr 2024

What is CACTUS Ransomware?

In May 2023, Kroll Cyber Threat Intelligence Analysts identified CACTUS as a new ransomware strain that had been actively targeting large commercial organizations since March 2023 [1]. CACTUS ransomware gets its name from the filename of the ransom note, “cAcTuS.readme.txt”. Encrypted files are appended with the extension “.cts”, followed by a number which varies between attacks, e.g. “.cts1” and “.cts2”.

As the cyber threat landscape adapts to ever-present fast-paced technological change, ransomware affiliates are employing progressively sophisticated techniques to enter networks, evade detection and achieve their nefarious goals.

How does CACTUS Ransomware work?

In the case of CACTUS, threat actors have been seen gaining initial network access by exploiting Virtual Private Network (VPN) services. Once inside the network, they may conduct internal scanning using tools like SoftPerfect Network Scanner, and PowerShell commands to enumerate endpoints, identify user accounts, and ping remote endpoints. Persistence is maintained by the deployment of various remote access methods, including legitimate remote access tools like Splashtop, AnyDesk, and SuperOps RMM in order to evade detection, along with malicious tools like Cobalt Strike and Chisel. Such tools, as well as custom scripts like TotalExec, have been used to disable security software to distribute the ransomware binary. CACTUS ransomware is unique in that it adopts a double-extortion tactic, stealing data from target networks and then encrypting it on compromised systems [2].

At the end of November 2023, cybersecurity firm Arctic Wolf reported instances of CACTUS attacks exploiting vulnerabilities on the Windows version of the business analytics platform Qlik, specifically CVE-2023-41266, CVE-2023-41265, and CVE-2023-48365, to gain initial access to target networks [3]. The vulnerability tracked as CVE-2023-41266 can be exploited to generate anonymous sessions and perform HTTP requests to unauthorized endpoints, whilst CVE-2023-41265 does not require authentication and can be leveraged to elevate privileges and execute HTTP requests on the backend server that hosts the application [2].

Darktrace’s Coverage of CACTUS Ransomware

In November 2023, Darktrace observed malicious actors leveraging the aforementioned method of exploiting Qlik to gain access to the network of a customer in the US, more than a week before the vulnerability was reported by external researchers.

Here, Qlik vulnerabilities were successfully exploited, and a malicious executable (.exe) was detonated on the network, which was followed by network scanning and failed Kerberos login attempts. The attack culminated in the encryption of numerous files with extensions such as “.cts1”, and SMB writes of the ransom note “cAcTuS.readme.txt” to multiple internal devices, all of which was promptly identified by Darktrace DETECT™.

While traditional rules and signature-based detection tools may struggle to identify the malicious use of a legitimate business platform like Qlik, Darktrace’s Self-Learning AI was able to confidently identify anomalous use of the tool in a CACTUS ransomware attack by examining the rarity of the offending device’s surrounding activity and comparing it to the learned behavior of the device and its peers.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled in autonomous response mode during their encounter with CACTUS ransomware meaning that attackers were able to successfully escalate their attack to the point of ransomware detonation and file encryption. Had RESPOND been configured to autonomously act on any unusual activity, Darktrace could have prevented the attack from progressing, stopping the download of any harmful files, or the encryption of legitimate ones.

Cactus Ransomware Attack Overview

Holiday periods have increasingly become one of the favoured times for malicious actors to launch their attacks, as they can take advantage of the festive downtime of organizations and their security teams, and the typically more relaxed mindset of employees during this period [4].

Following this trend, in late November 2023, Darktrace began detecting anomalous connections on the network of a customer in the US, which presented multiple indicators of compromise (IoCs) and tactics, techniques and procedures (TTPs) associated with CACTUS ransomware. The threat actors in this case set their attack in motion by exploiting the Qlik vulnerabilities on one of the customer’s critical servers.

Darktrace observed the server device making beaconing connections to the endpoint “zohoservice[.]net” (IP address: 45.61.147.176) over the course of three days. This endpoint is known to host a malicious payload, namely a .zip file containing the command line connection tool PuttyLink [5].

Darktrace’s Cyber AI Analyst was able to autonomously identify over 1,000 beaconing connections taking place on the customer’s network and group them together, in this case joining the dots in an ongoing ransomware attack. AI Analyst recognized that these repeated connections to highly suspicious locations were indicative of malicious command-and-control (C2) activity.

Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.
Figure 1: Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.

The infected device was then observed downloading the file “putty.zip” over a HTTP connection using a PowerShell user agent. Despite being labelled as a .zip file, Darktrace’s detection capabilities were able to identify this as a masqueraded PuttyLink executable file. This activity resulted in multiple Darktrace DETECT models being triggered. These models are designed to look for suspicious file downloads from endpoints not usually visited by devices on the network, and files whose types are masqueraded, as well as the anomalous use of PowerShell. This behavior resembled previously observed activity with regards to the exploitation of Qlik Sense as an intrusion technique prior to the deployment of CACTUS ransomware [5].

The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.
Figure 2: The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.

Following the download of the masqueraded file, Darktrace observed the initial infected device engaging in unusual network scanning activity over the SMB, RDP and LDAP protocols. During this activity, the credential, “service_qlik” was observed, further indicating that Qlik was exploited by threat actors attempting to evade detection. Connections to other internal devices were made as part of this scanning activity as the attackers attempted to move laterally across the network.

Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.
Figure 3: Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.

The compromised server was then seen initiating multiple sessions over the RDP protocol to another device on the customer’s network, namely an internal DNS server. External researchers had previously observed this technique in CACTUS ransomware attacks where an RDP tunnel was established via Plink [5].

A few days later, on November 24, Darktrace identified over 20,000 failed Kerberos authentication attempts for the username “service_qlik” being made to the internal DNS server, clearly representing a brute-force login attack. There is currently a lack of open-source intelligence (OSINT) material definitively listing Kerberos login failures as part of a CACTUS ransomware attack that exploits the Qlik vulnerabilities. This highlights Darktrace’s ability to identify ongoing threats amongst unusual network activity without relying on existing threat intelligence, emphasizing its advantage over traditional security detection tools.

Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.
Figure 4: Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.

In the month following these failed Kerberos login attempts, between November 26 and December 22, Darktrace observed multiple internal devices encrypting files within the customer’s environment with the extensions “.cts1” and “.cts7”. Devices were also seen writing ransom notes with the file name “cAcTuS.readme.txt” to two additional internal devices, as well as files likely associated with Qlik, such as “QlikSense.pdf”. This activity detected by Darktrace confirmed the presence of a CACTUS ransomware infection that was spreading across the customer’s network.

The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
Figure 5: The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.
Figure 6: CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.

Following this initial encryption activity, two affected devices were observed attempting to remove evidence of this activity by deleting the encrypted files.

Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.
Figure 7: Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.

結論

In the face of this CACTUS ransomware attack, Darktrace’s anomaly-based approach to threat detection enabled it to quickly identify multiple stages of the cyber kill chain occurring in the customer’s environment. These stages ranged from ‘initial access’ by exploiting Qlik vulnerabilities, which Darktrace was able to detect before the method had been reported by external researchers, to ‘actions on objectives’ by encrypting files. Darktrace’s Self-Learning AI was also able to detect a previously unreported stage of the attack: multiple Kerberos brute force login attempts.

If Darktrace’s autonomous response capability, RESPOND, had been active and enabled in autonomous response mode at the time of this attack, it would have been able to take swift mitigative action to shut down such suspicious activity as soon as it was identified by DETECT, effectively containing the ransomware attack at the earliest possible stage.

Learning a network’s ‘normal’ to identify deviations from established patterns of behaviour enables Darktrace’s identify a potential compromise, even one that uses common and often legitimately used administrative tools. This allows Darktrace to stay one step ahead of the increasingly sophisticated TTPs used by ransomware actors.

Credit to Tiana Kelly, Cyber Analyst & Analyst Team Lead, Anna Gilbertson, Cyber Analyst

付録

参考文献

[1] https://www.kroll.com/en/insights/publications/cyber/cactus-ransomware-prickly-new-variant-evades-detection

[2] https://www.bleepingcomputer.com/news/security/cactus-ransomware-exploiting-qlik-sense-flaws-to-breach-networks/

[3] https://explore.avertium.com/resource/new-ransomware-strains-cactus-and-3am

[4] https://www.soitron.com/cyber-attackers-abuse-holidays/

[5] https://arcticwolf.com/resources/blog/qlik-sense-exploited-in-cactus-ransomware-campaign/

Darktrace DETECT Models

Compromise / Agent Beacon (Long Period)

Anomalous Connection / PowerShell to Rare External

Device / New PowerShell User Agent

Device / Suspicious SMB Scanning Activity

Anomalous File / EXE from Rare External Location

Anomalous Connection / Unusual Internal Remote Desktop

User / Kerberos Password Brute Force

Compromise / Ransomware / Ransom or Offensive Words Written to SMB

Unusual Activity / Anomalous SMB Delete Volume

Anomalous Connection / Multiple Connections to New External TCP Port

Compromise / Slow Beaconing Activity To External Rare  

Compromise / SSL Beaconing to Rare Destination  

Anomalous Server Activity / Rare External from Server  

Compliance / Remote Management Tool On Server

Compromise / Agent Beacon (Long Period)  

Compromise / Suspicious File and C2  

Device / Internet Facing Device with High Priority Alert  

Device / Large Number of Model Breaches  

Anomalous File / Masqueraded File Transfer

Anomalous File / Internet facing System File Download  

Anomalous Server Activity / Outgoing from Server

Device / Initial Breach Chain Compromise  

Compromise / Agent Beacon (Medium Period)  

Compromise / Agent Beacon (Long Period)  

IoC一覧

IoC - Type - Description

zohoservice[.]net: 45.61.147[.]176 - Domain name: IP Address - Hosting payload over HTTP

Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17763.2183 - User agent -PowerShell user agent

.cts1 - File extension - Malicious appendage

.cts7- File extension - Malicious appendage

cAcTuS.readme.txt - Filename -Ransom note

putty.zip – Filename - Initial payload: ZIP containing PuTTY Link

MITRE ATT&CK マッピング

Tactic - Technique  - SubTechnique

Web Protocols: COMMAND AND CONTROL - T1071 -T1071.001

Powershell: EXECUTION - T1059 - T1059.001

Exploitation of Remote Services: LATERAL MOVEMENT - T1210 – N/A

Vulnerability Scanning: RECONAISSANCE     - T1595 - T1595.002

Network Service Scanning: DISCOVERY - T1046 - N/A

Malware: RESOURCE DEVELOPMENT - T1588 - T1588.001

Drive-by Compromise: INITIAL ACCESS - T1189 - N/A

Remote Desktop Protocol: LATERAL MOVEMENT – 1021 -T1021.001

Brute Force: CREDENTIAL ACCESS        T – 1110 - N/A

Data Encrypted for Impact: IMPACT - T1486 - N/A

Data Destruction: IMPACT - T1485 - N/A

File Deletion: DEFENSE EVASION - T1070 - T1070.004

続きを読む
著者について
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.