Blog

Inside the SOC

赤い服の窃盗団:コンプライアンスと情報窃取型マルウェア RedLine

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Sep 2022
13
Sep 2022
This blog explores Darktrace's detection of a BeamWinHTTP and RedLine info stealer compromise caused by continued torrenting and a malicious download within a telecommunication customer’s environment.

MaaS(Malware as a Service)の台頭により、インフォスティーラーの発見と配備がかつてないほど容易になっています [1]。このような状況下、企業はサイバーハイジーンを優先し、自社の環境におけるコンプライアンスの問題に対処することが極めて重要です。MaaSのおかげで、ほとんど経験のない攻撃者が、低リスクの攻撃と思われるものを、重大な侵害に拡大することができます。このブログでは、より良いサイバーハイジーンとコンプライアンス問題に対する意識の向上で軽減できたかもしれない侵害について深堀します。

図1: 攻撃のタイムライン

2022年5月、Darktrace DETECT/Networkは、ラテンアメリカの通信会社でtorrentアクティビティに関する複数のコンプライアンスアラートにリンクしているデバイスを特定しました。このデバイスは、アーカイブされたウェブページから疑わしい実行ファイルをダウンロードすることになりました。当初、ダウンロードされたファイルを分析したところ、このファイルは、クライアントの業種に関連する古いソフトウェア(GeoDesy GD-300用のSNMPc管理ツール)であるものの、正規のものである可能性があることがわかりました。しかし、これはさらなる不審な行動の前の最初の出来事であったため、ダウンロードされたソフトウェアがマルウェアと一緒にパッケージされており、最初の侵害を示すものである可能性もあったのです。4月上旬以降、このデバイスは、BitTorrentとuTorrent(BitTorrentクライアント)の双方に対して定期的にコンプライアンスアラートを破っていました。これらの接続は、共通のトレントポートである6881を介して発生しており、これが感染経路であった可能性があります。  

Figure 2: View of archived webpage which the suspicious executable was downloaded from

実行ファイルがダウンロードされた直後、Darktrace DETECTによって新たな送信SSH接続がAdvanced Searchに 'SSH::Heuristic_Login_Success' という通知とともに警告されました。これは、違反デバイスがこのプロトコルで接続を行うことは一般的ではなく、宛先が見たことのないブルガリアのIPアドレス(79.142.70[.]239)であることから、強調されて表示されました。この接続は4分間続き、デバイスは31.36MBのデータをダウンロードしました。 

この後、違反デバイスは、疑わしいユーザーエージェントを使用して、ロシアとデンマークの稀なエンドポイントに異常なHTTP接続を行っていることが確認されました。ロシアのエンドポイントは、最近登録された1つのドメインをリストアップしたテキストファイル('incricinfo[.]com')をホストしていることが指摘されました。デンマークのエンドポイントへの接続は、OSINTがBeamWinHTTPローダー[2]の使用に関連付けたURIを持つIPに対して行われました。このローダーは、他のマルウェア、特に情報窃取プログラム[3]をダウンロードし実行するために使用されることがあります。 

Figure 3: Screenshot of Russian endpoint with link to incricinfo[.]com 
図4:複数の不審なファイルがダウンロードされる前に発生した異常なHTTP接続を強調するCyber AI Analyst

異常なユーザーエージェントとの接続と同時に、端末がエンドポイントから「Yuuichirou-hanma[.]s3[.]pl-waw[.]scw[.]cloud」という実行可能ファイルをダウンロードする様子も確認されました。このファイルを分析したところ、さらなるマルウェアや潜在的に望ましくないプログラム(PUP)を展開するために使用される可能性があることが判明しました。BeamWinHTTPはまた、より邪悪なプログラムをロードし、妥協を広めるのに役立つこれらのPUPsのインストールを引き起こします。 

この挙動は、デバイスがエンドポイントである「hakhaulogistics[.]com」から5種類の実行ファイルをダウンロードした際に確認されました。このドメインは、Darktrace が環境内で新しいものとしてマークしたベトナムの物流会社にリンクされています。このドメインが侵害され、悪意のあるインフラストラクチャをホストするために使用されていた可能性があります。侵害の時点で、ダウンロードされたファイルのいくつかは、一般的なOSINT [4] によって悪意のあるものとしてラベル付けされていました。さらに、少なくとも1つのファイルは、RedLine Information Stealerに明示的にリンクされていました。  

その直後、このデバイスは既知のTorリレーノードに接続しました。Torは、攻撃者の活動を匿名化し、難読化する方法を提供するため、C2通信の手段として一般的に使用されています。この時点で、この活動に関する最初のProactive Threat Notification(PTN)が発生しました。これにより、Darktrace SOCから直ちにフォローアップ調査が行われ、イベントのタイムラインと影響を受けるデバイスが、お客様のセキュリティチームに直接発行されました。 

図5: Cyber AI Analystによる、異常な実行ファイルのダウンロードとその後のTor接続の強調表示。poweroff[.]exeは、複数のOSINTソースにより、潜在的に悪意のあるファイルであると強調されています。

この時点までに、Darktrace は、明らかな機能やサービスを持たないように見えるさまざまなエンドポイントへの大量の異常な送信 HTTP POST を確認していました。これらのPOSTリクエストに続いて、侵害されたデバイスは、ドメイン生成アルゴリズム(DGA)によって生成されたと思われるドメイン www[.]qfhwji6fnpiad3gs[.]com への長いSSL接続を開始していることが確認されました。最後に、SSL接続の少し後に、デバイスがロシアのドメイン test-hf[.]su から別の実行可能ファイルをダウンロードするのが確認されました。このファイルに関する調査から、このファイルはRedLine Stealer [5] に関連することが示唆されました。  

図6: 数値化されたexeのダウンロードに関連する、異常なHTTP接続を強調表示するCyber AI Analyst

コンプライアンス違反の危険性 

RedLineによる侵害は顧客の懸念事項でしたが、セキュリティ上のギャップは可視性ではなく、むしろベストプラクティスでした。これらの事象が発生する前、デバイスは一般的にtorrentingに関連する接続を送受信していることが確認されていることに注目することが重要です。過去には、RedLine Stealerが「クラックされた」ソフトウェア(コピープロテクトが解除されたソフトウェア)を装っていることが確認されています [6]。今回の例では、偽の「SNMPc」実行ファイルを最初にダウンロードしたことが、この動作の証拠となった可能性があります。 

これは、悪意のあるファイルを転送するピアツーピアベクターとして、torrentも非常に人気があることを思い出させるものです。ネットワークのスロットリングや未承認のVPNを使用する可能性もあり、トレントは通常、企業環境においてコンプライアンス違反とみなされます。今回の事件が、ユーザーが無意識に悪意のあるソフトウェアをダウンロードしたことが原因であれ、BitTorrent の使用により悪意のある行為者にさらされたことが原因であれ、いずれのケースも、ユーザーが既存のコンプライアンス管理を回避しているか、一般にコンプライアンス管理が欠如していることを示しています。企業にとって重要なのは、ユーザーが、企業が悪意のある行為者にさらされるのを抑えるような行動をとっているかどうかを確認することです。今後、このような脅威を阻止するためには、企業は日頃から適切なサイバーハイジーンを奨励し、トレントのような特定の行為をブロックするアクセス制御を導入する必要があります。  

ユーザーが何をしているかにかかわらず、Darktrace は、コンプライアンス違反やコンプライアンス欠如に起因する活動を検知し、対策を講じることができるように位置づけられています。このブログのインシデントで使用されたさまざまなC2ドメインは、ほとんどのセキュリティツールが警告を発したり、人間のチームがトリアージしたりするには、あまりにも素早いものでした。しかし、これはCyber AI Analyst にとっては問題なく、キルチェーン全体で攻撃の側面を引き寄せ、顧客のセキュリティチームとDarktrace SOCアナリストの両方の時間を大幅に節約することができました。もし Darktrace RESPONDがアクティブに設定されていれば、最初のBitTorrent接続や着信ダウンロードなどの活動をブロックすることができましたが、適切な予防措置があれば、ブロックする必要はありません。 Darktrace PREVENTは、このような脆弱性が悪用される前に、攻撃者の先手を打って防御を強化し、あらゆる脆弱性を排除するために継続的に活動しています。これには、攻撃対象領域の管理、攻撃経路のモデリング、セキュリティ意識の向上に関するトレーニングなどが含まれます。この場合、Darktrace PREVENTは、Torrentingアクティビティを潜在的に有害な攻撃経路の一部として強調し、それを軽減するための最適なアクションを推奨することができたはずです。

「未経験者でも大丈夫」 

これまで、組織を攻撃するために必要なツールを作成し、使用できるのは、高度な技術を持つ攻撃者のみでした。しかし、Ransomware-as-a-Service(RaaS)が高い利益を生むことが証明されたため、マルウェアもまた儲かるビジネスとなりつつあるのは当然と言えるでしょう。SaaSが、開発経験のない正規の企業がアプリを使用・維持するのに役立つように、MaaSは、ハッキングの経験がほとんどない攻撃者が組織を侵害し、目的を達成するのに役立ちます。RedLine Stealerは、簡単に入手でき、かつ高価ではないので、より頻繁に、より多くの被害者に対して攻撃を行うことができます。このブログで取り上げた事件はその証拠であり、セキュリティは強固な可視性だけでなく、コンプライアンスとベストプラクティスからも得られるということを強く示しています。PREVENT のような強力な防御ツールがあれば、セキュリティチームは時間を節約しながら、こうしたセキュリティの側面を先取りしていることに自信を持つことができます。

Adam Stevens氏のこのブログへの寄稿に感謝します。

付録

Darktrace モデルブリーチ

·      Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Multiple EXE from Rare External 

·      Anomalous File / Numeric Exe Download

·      Anomalous Server Activity / New User Agent from Internet Facing System

·      Compliance / SSH to Rare External Destination

·      Compromise / Anomalous File then Tor 

·      Compromise / Possible Tor Usage 

·      Device / Initial Breach Chain Compromise

·      Device / Long Agent Connection to New Endpoint

参考文献

[1] https://blog.sonicwall.com/en-us/2021/12/the-rise-and-growth-of-malware-as-a-service/

[2] https://asec.ahnlab.com/en/33679/  

[3] https://asec.ahnlab.com/en/20930/

[4] https://www.virustotal.com/gui/file/acfc06b4bcda03ecf4f9dc9b27c510b58ae3a6a9baf1ee821fc624467944467b & https://www.virustotal.com/gui/file/dad6311f96df65f40d9599c84907bae98306f902b1489b03768294b7678a5e79 

[5] https://www.virustotal.com/gui/file/ff7574f9f1d15594e409bee206f5db6c76db7c90dda2ae4f241b77cd0c7b6bf6

[6] https://asec.ahnlab.com/en/30445/

NEWSLETTER

Like this and want more?

最新の業界ニュースやインサイトをお届けします。
You can unsubscribe at any time. Privacy Policy
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Steven Sosa
Analyst Team Lead
この記事を共有
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

Inside the SOC

PurpleFox in a Henhouse: How Darktrace Hunted Down a Persistent and Dynamic Rootkit

Default blog imageDefault blog image
27
Nov 2023

Versatile Malware: PurpleFox

As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.

One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.

The Evolution of PurpleFox

The Original Strain

First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.  

Subsequent Variants

Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.

The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.

Darktrace detection of PurpleFox

In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.

Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.

While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.

攻撃の概要

Figure 1: Timeline of PurpleFox malware kill chain.

Initial Scanning over SMB

On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.

This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

Figure 2: Cyber AI Analyst technical details summarizing the initial scanning activity seen with the internal network scan over port 445.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

Figure 3: The affected device’s Model Breach Event Log showing the initial scanning activity observed by Darktrace DETECT and the corresponding suggested RESPOND action.

特権昇格

The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.

Exploitation

Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.

Figure 4: PurpleFox remote service control activity captured by a Darktrace DETECT model breach.
Figure 5: The infected device’s Model Breach Event Log showing the anomalous service control activity being picked up by DETECT.

There are a few MSIEXEC flags to note:

  • /i : installs or configures a product
  • /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required

Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Figure 6: The infected device’s Model Breach Event Log showing the outbound activity corresponding to PurpleFox’s wormlike spread. This was caught by DETECT and the corresponding suggested RESPOND action.

Installation

On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.

The first connection was made with the URI ‘/test.png’.  It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.

The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.

Figure 7: Packet Capture from an affected customer device showing the initial HTTP requests to the payload server.
Figure 8: Packet Capture showing the HTTP requests to download the payloads.

The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Figure 9: PCAP from the affected customer device showing the Windows Installer user-agent associated with the .PNG file download.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.

By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.  

Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.

In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.

Figure 10: Cyber AI Analyst technical details summarizing the downloads of the PurpleFox payload.
Figure 11 (a): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.
Figure 11 (b): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.

If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.

結論

The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indictors of compromise (IoCs), necessitating a more sophisticated approach to threat detection.  

Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.  

By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.

Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore

付録

Darktraceによるモデル検知

  • Device / Increased External Connectivity
  • Device / Large Number of Connections to New Endpoints
  • Device / SMB Session Brute Force (Admin)
  • Compliance / External Windows Communications
  • Anomalous Connection / New or Uncommon Service Control
  • Compromise / Unusual SVCCTL Activity
  • Compromise / Rare Domain Pointing to Internal IP
  • Anomalous File / Masqueraded File Transfer

RESPOND Models

  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block

IoC一覧

IoC - Type - Description

/C558B828.Png - URI - URI for Purple Fox Rootkit [4]

5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)

190.4.210[.]242 - IP - Purple Fox C2 Servers

218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)

180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)

103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

MITRE ATT&CK マッピング

Tactic - Technique

Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002

Resource Development - Obtain Capabilities: Malware T1588.001

Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001

Initial Access - Drive-by Compromise T1189

Defense Evasion - Masquerading T1036

Credential Access - Brute Force T1110

Discovery - Network Service Discovery T1046

Command and Control - Proxy: External Proxy T1090.002

参考文献

  1. https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
  2. https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
  3. https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
  4. https://www.foregenix.com/blog/an-overview-on-purple-fox
  5. https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
続きを読む
著者について
Piramol Krishnan
Cyber Security Analyst

$70 Million in Cyber Security Funding for Electric Cooperatives & Utilities

Default blog imageDefault blog image
22
Nov 2023

What is the Bipartisan Infrastructure Deal?

The Bipartisan Infrastructure Law passed by congress in 2021 aimed to upgrade power and infrastructure to deliver clean, reliable energy across the US to achieve zero-emissions. To date, the largest investment in clean energy, the deal will fund new programs to support the development and deployment of clean energy technology.

Why is it relevant to electric municipalities?

Section 40124 of the Bipartisan Infrastructure Law allocates $250 million over a 5-year period to create the Rural and Municipal Utility Cybersecurity (RMUC) Program to help electric cooperative, municipal, and small investor-owned utilities protect against, detect, respond to, and recover from cybersecurity threats.1 This act illuminates the value behind a full life-cycle approach to cyber security. Thus, finding a cyber security solution that can provide all aspects of security in one integrated platform would enhance the overall security posture and ease many of the challenges that arise with adopting multiple point solutions.

On November 16, 2023 the Office of Cybersecurity, Energy Security, and Emergency Response (CESER) released the Advanced Cybersecurity Technology (ACT) for electric utilities offering a $70 million funding opportunity that aims to enhance the cybersecurity posture of electric cooperative, municipal, and small investor-owned utilities.

Funding Details

10 projects will be funded with application submissions due November 29, 2023, 5:00 pm ET with $200,000 each in cash prizes in the following areas:

  1. Direct support for eligible utilities to make investments in cybersecurity technologies, tools, training, and improvements in utility processes and procedures;
  2. Funding to strengthen the peer-to-peer and not-for-profit cybersecurity technical assistance ecosystem currently serving eligible electric utilities; and
  3. Increasing access to cybersecurity technical assistance and training for eligible utilities with limited cybersecurity resources. 2

To submit for this award visit: https://www.herox.com/ACT1Prize

How can electric municipalities utilize the funding?

While the adoption of hybrid working patterns increase cloud and SaaS usage, the number of industrial IoT devices also continues to rise. The result is decrease in visibility for security teams and new entry points for attackers. Particularly for energy and utility organizations.

Electric cooperatives seeking to enhance their cyber security posture can aim to invest in cyber security tools that provide the following:

Compliance support: Consider finding an OT security solution that maps out how its solutions and features help your organization comply with relevant compliance mandates such as NIST, ISA, FERC, TSA, HIPAA, CIS Controls, and more.

Anomaly based detection: Siloed security solutions also fail to detect attacks that span
the entire organization. Anomaly-based detection enhances an organization’s cyber security posture by proactively defending against potential attacks and maintaining a comprehensive view of their attack surface.

Integration capabilities: Implementation of several point solutions that complete individual tasks runs the risk of increasing workloads for operators and creates additional challenges with compliance, budgeting, and technical support. Look for cyber security tools that integrate with your existing technologies.

Passive and active asset tracking: Active Identification offers accurate enumeration, real time updates, vulnerability assessment, asset validation while Passive Identification eliminates the risk of operational disruption, minimizes risk, does not generate additional network traffic. It would be ideal to find a security solution that can do both.

Can secure both IT and OT in unison: Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, a mature security posture for critical infrastructure would include a single solution for both IT and OT. Separate solutions for IT and OT present challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. These independent solutions also significantly increase operator workload and materially diminish risk mitigation efforts.

Darktrace/OT for Electric Cooperatives and Utilities

For smaller teams with just one or two dedicated employees, Darktrace’s Cyber AI Analyst and Investigation features allow end users to spend less time in the platform as it compiles critical incidents into comprehensive actionable event reports. AI Analyst brings all the information into a centralized view with incident reporting in natural language summaries and can be generated for compliance reports specific to regulatory requirements.  

For larger teams, Darktrace alerts can be forwarded to 3rd party platforms such as a SIEM, where security team decision making is augmented. Additionally, executive reports and autonomous response reduce the alert fatigue generally associated with legacy tools. Most importantly, Darktrace’s unique understanding of normal allows security teams to detect zero-days and signatureless attacks regardless of the size of the organization and how alerts are consumed.

Key Benefits of Darktrace/OT

Figure 1: Darktrace/OT stops threats moving from IT to OT by providing a unified view across both systems

参考文献

1. https://www.whitehouse.gov/briefing-room/statements-releases/2021/11/06/fact-sheet-the-bipartisan-infrastructure-deal/

2. https://www.energy.gov/ceser/rural-and-municipal-utility-advanced-cybersecurity-grant-and-technical-assistance-rmuc

続きを読む
著者について
Jeff Cornelius
EVP, Cyber-Physical Security

Good news for your business.
Bad news for the bad guys.

無償トライアルを開始

無償トライアルを開始

柔軟な導入
Cloud-based deployment.
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
フォームを送信する際に何らかの問題が発生しました。

デモを見る

柔軟な導入
仮想的にインストールすることも、ハードウェアでインストールすることも可能です。
迅速なインストール
設定時間はわずか1時間、メールセキュリティのトライアルはさらに短時間で完了します。
製品を選ぶ
クラウド、ネットワーク、Eメールなど、最も必要とされる領域で自己学習型AIの能力をお試しください。
購入義務なし
Darktrace Threat Visualizerと組織毎にカスタマイズされた3回の脅威レポートへのフルアクセスを提供しますが、購入の義務はありません。
ありがとうございます!あなたの投稿を受け取りました。
フォームを送信する際に何らかの問題が発生しました。