Blog
PREVENT
偽情報:不確実な時代における確実な情報







インターネットが始まって以来、私たちはサイバースペースにおけるユーザー間の情報共有が、指数関数的とは言わないまでも、ほぼ急増するのを目の当たりにしてきました。その後、ソーシャルメディアの出現により、世界中のインターネットユーザーが、意図的であろうとなかろうと、情報を共有し、議論し、宣伝し、消費することができるパブリックオンラインプラットフォームへのアクセスがどのようにもたらされたかを見てきました。
これらのプラットフォームは、今や多くのユーザーを抱え、様々な情報を効果的に共有できるようになり、オンラインコミュニティ、フォーラム、ウェブページ、ブログなどの出現を促しました。
公共および民間の組織は、これらのプラットフォームを活用して、一般市民と直接コミュニケーションを取ったり、視聴者と関連する知識を共有したり、ユーザーが組織のオンラインプレゼンスを知る機会を増やしたりすることができます。しかし、このようなプラットフォームを利用する際に、組織やユーザーが直面する問題があります。
誤情報 と 偽情報
情報源とその利用者の数は増え続け、どの情報が真実で、どれが真実でないかを見分けるという、以前からあった課題がより複雑な形で導入されました。不正確な情報を表現するために、誤情報と偽情報という2つの用語が使われます。
誤情報とは、「意図の有無や誤解を招くかどうかにかかわらず、流布される誤った情報」のことです。例えば、誰かがソーシャルメディア上で説得力のある記事を読み、この記事が実際にそうであるかどうかを確認することなく、他の人と共有することができます。
COVID-19が大流行したとき、多くの人が自分の健康について当然ながら心配し、不安に思い、迫り来る健康リスクについてできるだけ多くの情報を得ようとしました。しかし、その答えは、様々な意見や「偽りの事実」に溢れ、事実と偽りを見分けることが難しくなっていました。
その結果、友人や親戚、知人から誤った情報がソーシャルメディアに投稿され、最初は善意でシェアしていたのに、残念ながら誤報だったということもありました。
偽情報とは、代わりに「意図的に誤解を招く、または偏った情報、操作された物語や事実、プロパガンダ」を意味し、意図的に誤った情報を流布していると解釈することができます。
誤情報と偽情報の大きな違いは、後者に明確な意図があるかどうかです。たとえば、政治的紛争、あるいは戦争が起こると、対立する一方の政党、あるいは両方の政党が、自国内の視聴者に向けて、自らを正義の解放者、あるいは無防備な被害者として描写するようなニュースを流すことが珍しくありません。
偽情報と地政学
地政学的紛争、国家間の争い、デジタル革命、パンデミックなどの激動期には、国民国家の主体、独立系の脅威主体、その他のイデオロギー主体による大規模な偽情報キャンペーンが広く行われます。このようなキャンペーンは、企業、政府、個人を同様にターゲットにしています。
偽情報の拡散に最もよく使われる経路のひとつは、ソーシャルメディアプラットフォームでしょう。ソーシャルメディア上で共有された情報は、世界中のあらゆるオーディエンスに急速に広まる可能性があります。悪意を持ったアクターが「ボット」を使うことで、偽情報の拡散の勢いを加速させることができるのです。
ボットとは、「ユーザーや他のプログラムのエージェントとして動作し、人間の活動を刺激するコンピュータプログラム」のことで、特定の作業を繰り返し自律的に行うために使用されます。このようなボットが大量に存在し、Facebook、X(Twitter)、Instagramなど、最も人気のあるソーシャルプラットフォームで、偽情報の拡散に積極的に利用されています。
偽情報が組織に与える影響
組織が偽情報キャンペーンに狙われるとき、悪意のあるアクターは、論争に包まれたトピックに関する不和や不確実性を利用することを目的としています。例えば、オンライン詐欺師のような悪意のあるアクターは、何が真実で何が真実でないかを見極めようとしている受信者にとって、より説得力のあるフィッシングメールを作成するなどして、この不和を誘発することを目的としているのです。
例えば、「大手通信会社のデータが流出した」というキャンペーンを行い、受信者に自分の個人情報もその「流出」の影響を受けていないかどうかを確認するよう促すメールを作成します。
この情報が正しいかどうかは別として、インターネット上には様々なニュースが飛び交い、その情報が正しいかどうかを判断することはますます難しくなっています。
これと並行して、受信者は、情報漏えいや情報漏えいに関するニュースに対して不安や不確実性を感じている可能性があり、このことが、受信者がこの話題に関する新しい情報に直ちに反応する判断に影響を与えることがよくあります。詐欺師は、素人目には合法的に見えるように注意深く作られたドメイン(例えば、公式組織のドメインに酷似しているドメイン)を使用するので、受信者が疑わしい情報源を信用する可能性はさらに高まります。そのため、フィッシングメールの受信者は、メールに添付されたリンクをクリックし、自分のデータも流出していないかどうかを確認したくなる可能性が高くなるのです。
偽情報の未来
情報操作によって生じる社会的緊張にすでに対処している組織は、現在、さらなるリスクに直面しています。不確実性が広がっている時代には、視聴者はフィッシングキャンペーンの影響を受けやすくなっている可能性があります。説得力のあるフィッシングキャンペーンを行うために、悪意のあるアクターはしばしば危険なドメインを使用したり、「タイポスクワッティング」と呼ばれる手法で正規のドメインを模倣しようとしたりします。
タイポスクワッティングとは、人気サイトや公式サイトの名前をわざと間違えてドメイン登録し、信頼できないコンテンツで埋め尽くして、被害者にソースの正当性を誤認させる行為のことです。
攻撃者の情報源と、その情報源を信用する被害者の感受性の間に、このような誤った正当性が確立されると、惑わされないようにするのは、ほとんど被害者次第となります。つまり、偽情報や偽のドメインが作成され、利用者に共有されるのと同じくらい、組織のアタックサーフェスは急速に拡大することになります。
アタックサーフェス管理で偽情報に対抗
偽のドメインに惑わされないようにオーディエンスを守ろうとする組織は、自社ブランドに関連するドメインの可視性を向上させる必要があります。ブランドを中心としたアプローチでドメインを発見することで、次のようなことに光を当てることができます。
- 現在、メンテナンスが行き届いているか、セキュリティが適切に確保されているかどうかなど、お客様の組織で管理されている既存のドメインの状態
- あなたの組織のブランドになりすまそうとする「新しい」ドメインが流入しているかどうか
このようなドメインの種類や、利用者がこれらのドメインとどのようなやり取りをしているかを把握することで、ブランドを操作、乗っ取り、なりすまそうとする悪意のある人物に対して、組織はより警戒心を持ち、対応することができるようになります。組織のブランドは、ドメインのような一般にアクセス可能なあらゆる種類の資産に浸透しているため、アタックサーフェスの管理計画に含めることが非常に重要になっています。攻撃対象領域の管理にブランド重視のアプローチを採用することで、レピュテーションリスクの観点から攻撃対象領域をより明確に把握することができます。
このようなアプローチで強化されたアタックサーフェス管理ソリューションは、組織のセキュリティチームが、視聴者や評判にリスクを及ぼしているドメインや外部向けデジタル資産を効率的に特定するのに役立ちます。また、これらのドメイン(およびその他の資産)を特定し、それらに関連するリスクを検知し、視聴者と組織の両方を保護するために必要な変更またはアクションを管理するために必要な反復作業を排除することができます。
Like this and want more?
More in this series
Blog
Inside the SOC
PurpleFox in a Henhouse: How Darktrace Hunted Down a Persistent and Dynamic Rootkit



Versatile Malware: PurpleFox
As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.
One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.
The Evolution of PurpleFox
The Original Strain
First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.
Subsequent Variants
Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.
The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.
Darktrace detection of PurpleFox
In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.
Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.
While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.
攻撃の概要

Initial Scanning over SMB
On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.
This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

特権昇格
The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.
Exploitation
Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.


There are a few MSIEXEC flags to note:
- /i : installs or configures a product
- /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required
Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Installation
On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.
The first connection was made with the URI ‘/test.png’. It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.
The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.


The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.
By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.
Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.
In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.



If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.
結論
The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indictors of compromise (IoCs), necessitating a more sophisticated approach to threat detection.
Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.
By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.
Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore
付録
Darktraceによるモデル検知
- Device / Increased External Connectivity
- Device / Large Number of Connections to New Endpoints
- Device / SMB Session Brute Force (Admin)
- Compliance / External Windows Communications
- Anomalous Connection / New or Uncommon Service Control
- Compromise / Unusual SVCCTL Activity
- Compromise / Rare Domain Pointing to Internal IP
- Anomalous File / Masqueraded File Transfer
RESPOND Models
- Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
- Antigena / Network / External Threat / Antigena Suspicious Activity Block
- Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
- Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
- Antigena / Network / External Threat / Antigena Suspicious File Block
- Antigena / Network / External Threat / Antigena File then New Outbound Block
IoC一覧
IoC - Type - Description
/C558B828.Png - URI - URI for Purple Fox Rootkit [4]
5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)
190.4.210[.]242 - IP - Purple Fox C2 Servers
218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)
180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)
103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
MITRE ATT&CK マッピング
Tactic - Technique
Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002
Resource Development - Obtain Capabilities: Malware T1588.001
Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001
Initial Access - Drive-by Compromise T1189
Defense Evasion - Masquerading T1036
Credential Access - Brute Force T1110
Discovery - Network Service Discovery T1046
Command and Control - Proxy: External Proxy T1090.002
参考文献
- https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
- https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
- https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
- https://www.foregenix.com/blog/an-overview-on-purple-fox
- https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
Blog
OT
$70 Million in Cyber Security Funding for Electric Cooperatives & Utilities



What is the Bipartisan Infrastructure Deal?
The Bipartisan Infrastructure Law passed by congress in 2021 aimed to upgrade power and infrastructure to deliver clean, reliable energy across the US to achieve zero-emissions. To date, the largest investment in clean energy, the deal will fund new programs to support the development and deployment of clean energy technology.
Why is it relevant to electric municipalities?
Section 40124 of the Bipartisan Infrastructure Law allocates $250 million over a 5-year period to create the Rural and Municipal Utility Cybersecurity (RMUC) Program to help electric cooperative, municipal, and small investor-owned utilities protect against, detect, respond to, and recover from cybersecurity threats.1 This act illuminates the value behind a full life-cycle approach to cyber security. Thus, finding a cyber security solution that can provide all aspects of security in one integrated platform would enhance the overall security posture and ease many of the challenges that arise with adopting multiple point solutions.
On November 16, 2023 the Office of Cybersecurity, Energy Security, and Emergency Response (CESER) released the Advanced Cybersecurity Technology (ACT) for electric utilities offering a $70 million funding opportunity that aims to enhance the cybersecurity posture of electric cooperative, municipal, and small investor-owned utilities.
Funding Details
10 projects will be funded with application submissions due November 29, 2023, 5:00 pm ET with $200,000 each in cash prizes in the following areas:
- Direct support for eligible utilities to make investments in cybersecurity technologies, tools, training, and improvements in utility processes and procedures;
- Funding to strengthen the peer-to-peer and not-for-profit cybersecurity technical assistance ecosystem currently serving eligible electric utilities; and
- Increasing access to cybersecurity technical assistance and training for eligible utilities with limited cybersecurity resources. 2
To submit for this award visit: https://www.herox.com/ACT1Prize
How can electric municipalities utilize the funding?
While the adoption of hybrid working patterns increase cloud and SaaS usage, the number of industrial IoT devices also continues to rise. The result is decrease in visibility for security teams and new entry points for attackers. Particularly for energy and utility organizations.
Electric cooperatives seeking to enhance their cyber security posture can aim to invest in cyber security tools that provide the following:
Compliance support: Consider finding an OT security solution that maps out how its solutions and features help your organization comply with relevant compliance mandates such as NIST, ISA, FERC, TSA, HIPAA, CIS Controls, and more.
Anomaly based detection: Siloed security solutions also fail to detect attacks that span
the entire organization. Anomaly-based detection enhances an organization’s cyber security posture by proactively defending against potential attacks and maintaining a comprehensive view of their attack surface.
Integration capabilities: Implementation of several point solutions that complete individual tasks runs the risk of increasing workloads for operators and creates additional challenges with compliance, budgeting, and technical support. Look for cyber security tools that integrate with your existing technologies.
Passive and active asset tracking: Active Identification offers accurate enumeration, real time updates, vulnerability assessment, asset validation while Passive Identification eliminates the risk of operational disruption, minimizes risk, does not generate additional network traffic. It would be ideal to find a security solution that can do both.
Can secure both IT and OT in unison: Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, a mature security posture for critical infrastructure would include a single solution for both IT and OT. Separate solutions for IT and OT present challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. These independent solutions also significantly increase operator workload and materially diminish risk mitigation efforts.
Darktrace/OT for Electric Cooperatives and Utilities
For smaller teams with just one or two dedicated employees, Darktrace’s Cyber AI Analyst and Investigation features allow end users to spend less time in the platform as it compiles critical incidents into comprehensive actionable event reports. AI Analyst brings all the information into a centralized view with incident reporting in natural language summaries and can be generated for compliance reports specific to regulatory requirements.
For larger teams, Darktrace alerts can be forwarded to 3rd party platforms such as a SIEM, where security team decision making is augmented. Additionally, executive reports and autonomous response reduce the alert fatigue generally associated with legacy tools. Most importantly, Darktrace’s unique understanding of normal allows security teams to detect zero-days and signatureless attacks regardless of the size of the organization and how alerts are consumed.
Key Benefits of Darktrace/OT
- Anomaly-based detection and real-time response
- Secures IT, OT, and IoT in unison
- Active and Passive Asset Identification
- Automated security reporting
- Attack surface management and vulnerability assessment
- Covers all levels of the Purdue Model
.png)
参考文献
