Blog
AIを活用したEメールソリューションがセキュリティチームをレベルアップする方法







現代のセキュリティチームは、あらゆる面で課題に直面しています。増大する攻撃対象への対応、安全なリモートワークのためのワークフォースの有効化、そのワークフォースを保護するための複数のセキュリティツールの管理などに追われることがあまりにも多いのです。さらに、AIツールによってサポートされるようになった、より洗練されたフィッシングキャンペーンが急増したことで、攻撃を先制することがこれまで以上に難しくなっています。
Eメールセキュリティソリューションを導入する際には、セキュリティチームのニーズを考慮する必要があります。信頼性の高い検知・対処テクノロジーと直感的なレポート、最適化されたワークフローを組み合わせることで、ユーザーインターフェースに費やす時間を最小限に抑えることは、ベンダーにとって、チームの価値を保証するための最重要事項であるはずです。
セキュリティチームを最前線から引き離す
従来のメールセキュリティソリューションでは、メールセキュリティポリシーを維持したり、公開すべきでないメールを公開したり、公開すべきメールを保留したりすることに、すべての時間を費やしていたのではありません。管理者の1日に、メールセキュリティダッシュボードに何十分も、何百分も費やすことはないはずです。
現在、チームはあまりにも頻繁にログインしており、その際、ドメインの安全なリストアップやブロック、Eメールの公開など、個別の判断を迫られています。このような場合、包括的なルールが作成され、攻撃者に将来の窓を開くことになり、意図しない結果で将来の仕事が増えることになりかねません。このような一騎打ちは、セキュリティチームを最前線に立たせ、本来なら人間が得意とする高度な戦略的業務に時間を割くべきところを、そのような状況に追い込んでしまいます。
自社を理解する:Eメールセキュリティの異なるアプローチ
今日のEメールセキュリティに関する議論では、ゲートウェイに依存することはもはや実現不可能であるというコンセンサスが得られています。新しい時代は、人工知能やAPIを活用したICES(統合クラウドメールセキュリティ)ソリューションやその他のツールの時代です。しかし、古い理念のまま新しいテクノロジーを採用しても意味がありません。これらのソリューションのほとんどは、AIを使って、過去の攻撃を見て次の攻撃を阻止しようとするという、従来と同じアプローチを自動化しているに過ぎないのです。
そこで、Darktrace/Emailでは、根本的に異なる独自のアプローチをとっています。単にAIを使うのではなく、適切な容量で使うことが重要なのです。私たちのAIは、ユーザーがどこからログインし、誰にEメールを送り、一日中どのような行動をとっているかを学習し、個々のプロファイルに応じて検知・対処プロセスを調整します。Darktrace/Emailは、脅威を無効化するために必要な最小限のアクションを実行します。一律に許可・不許可を決めるのではなく、ユーザーの普段の受信行動を把握した上で、リンクを書き換えたり、添付ファイルを保留したりします。悪意のあるEメールを阻止し、リスクのある要素を排除した正規のEメールを通過させることで、セキュリティチームは前述の不毛な消火活動から解放され、より戦略的で価値のある意思決定に時間を割くことができるようになります。
これは、私の現在のEメールセキュリティスタックを減らすことにつながります。私が必要とするレベルまで使い続けるでしょう。
Darktrace/Emailのアーリーアダプター
Account Takeover
アカウント乗っ取り防止機能の組み込みは、最新のEメールセキュリティにとって不可欠な要素です。セキュリティチームが必要としているのは、Eメール侵害だけでなく、攻撃者が受信トレイをコントロールした後に何が起こるのか、特にビジネスメール侵害(BEC)やランサムウェアのような最も有害なユースケースにおいての可視化です。これには、受信トレイ、送信メール、さらに幅広いアカウントのアクティビティにおけるユーザーの行動を理解することが必要です。Darktrace がEメールとMicrosoftまたはGoogleアカウントにわたるユーザーのアクティビティを一元的にキャプチャし、侵害されたアカウントを示す可能性のあるすべてのマーカーを検知して対策します。
Darktrace から得られる他のクラウドアプリケーションやネットワーク機器からのインサイトにより、ユーザーを360° 理解することができ、アカウントの乗っ取りやその他の有害行為の検知をさらに強化することができます。

「ユーザーフレンドリー」とは、実際にはどのようなものか
最高のユーザーインターフェイスとは、ログインする必要がないものです。理想的な世界では、インテリジェントなAIがこれまで人間が行っていた作業を自動化するため、チームがツールにアクセスする頻度が少なくなります。これは、Darktraceの精密な検知と遮断技術によって実現され、Eメールやアカウントに対して適切なアクションを取り、日常業務を中断させることなく脅威を無力化します。
2番目に優れたユーザーインターフェースは、素早くログインして、実行したアクションやユーザーの現在の活動など、重要な洞察を素早く得ることができ、その後、外に出ることができるものです。Darktrace/Emailでは、高いレベルでも細かいレベルでも、チームが重要な情報を素早く得ることができます。 ダッシュボードでは、ユーザーやEメールに関する洞察を即座に得ることができ、アクティブなユーザーID、ターゲットユーザー、アクションを起こしたEメールのリアルタイムなスナップショットを、攻撃の種類ごとに区分して表示します。
Darktrace は、あらゆるタッチポイントにおいて、最適化されたワークフローにより摩擦を軽減します。VIPの迅速な特定からリンクや添付ファイルの安全なプレビューまで、セキュリティチームはウィンドウを切り替えたり、アクセスしにくいインターフェースを操作したりすることなく、必要な情報を入手することができます。説明可能なAIは、個々のEメールやEメール環境全体の健全性を自然な言葉で要約し、シンプルなアクションフローにより、セキュリティチームは、例えば、VIPに独自の通知を送ったり、会計に携わる従業員に特別な注意を払うなど、従業員ごとにセキュリティをパーソナライズすることができます。このように、管理者はポリシーの管理に費やす時間をさらに短縮することができるのです。

理想的なインターフェースは、最も利用しやすいものでもあります。モバイルアプリは、セキュリティチームの利便性を保証し、時間や場所を問わず、外出先で分析できるインターフェースの主要機能をすべて利用できるようにします。チームは、重要なインシデントが発生した場合、デスクに戻らなくてもデータを即座に可視化し、対策を講じることができるという安心感を保ちながら、出張や退社をすることができます。

日を追うごとに、セキュリティチームは安心できるようになります。すべてのアクティビティが考慮され、AIが時間をかけてチューニングし、適応することで、脅威の検知と対処はさらに優れたものになります。
アプリでEメールを使えるようになることは、ゲームチェンジにつながります。
Darktrace/Emailのアーリーアダプター
全体像の把握
多くの場合、Eメールは、脅威アクターが情報および資産を収集するために組織内を密かに移動する際の入口となります。ほとんどのソリューションは、Eメールを単独で見ており、異なる事象に優先順位をつけたり、より広いパターンにつなげたりはしていません。
一方、Darktrace/Emailは、Darktrace のCyber AI Analystとシームレスに統合されています。このテクノロジーは、Darktrace のプラットフォームが生成するすべてのアラートを対象に、企業全体の調査を自律的に実施するものです。この統合により、悪意のあるEメールのアクティビティは、それが属するセキュリティインシデント全体のコンテキストで分析・表示されます。その結果、セキュリティチームは、Eメールに端を発し、他のアプリやエンドポイント、より広い企業ネットワークに広がった可能性がある問題の理由や原因を確認することができます。
従業員をセキュリティに積極的に参加させる
従業員がセキュリティに無関心であったり、甘かったりすると、セキュリティチームの役割はより困難なものになりかねません。特に、フィッシング詐欺のシミュレーションがあまり効果的でないことが証明されているため、セキュリティ手順に関する従業員のトレーニングも、繁忙期には後回しにされがちな課題です。
このため、Darktrace/Emailは、XAI(説明可能なAI)を使用して、Eメールについてどう思ったかを自然言語で説明し、その結果をセキュリティチームだけでなく、オプションでより多くの従業員にも提供します。Eメール内のコンテキストバナー、定期的なダイジェスト、またはOutlookで直接配信されるこれらのインサイトは、セキュリティ教育を四半期または年1回の演習からリアルタイムのセキュリティ意識に変えます。次回のブログでは、従業員エンゲージメントがセキュリティチームの取り組みを支援し、組織全体の防御を強化する方法について詳しく説明します。
Darktrace は根本的に異なるアプローチで構築されているため、斬新で標的型の高度な攻撃を阻止するだけでなく、正規のEメールを通過させることができます。このため、セキュリティチームが行っていた作業をAIが代行する、まさに全自動の技術となっています。
Like this and want more?
Blog
Inside the SOC
PurpleFox in a Henhouse: How Darktrace Hunted Down a Persistent and Dynamic Rootkit



Versatile Malware: PurpleFox
As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.
One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.
The Evolution of PurpleFox
The Original Strain
First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.
Subsequent Variants
Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.
The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.
Darktrace detection of PurpleFox
In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.
Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.
While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.
攻撃の概要

Initial Scanning over SMB
On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.
This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

特権昇格
The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.
Exploitation
Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.


There are a few MSIEXEC flags to note:
- /i : installs or configures a product
- /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required
Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Installation
On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.
The first connection was made with the URI ‘/test.png’. It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.
The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.


The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.
By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.
Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.
In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.



If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.
結論
The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indictors of compromise (IoCs), necessitating a more sophisticated approach to threat detection.
Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.
By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.
Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore
付録
Darktraceによるモデル検知
- Device / Increased External Connectivity
- Device / Large Number of Connections to New Endpoints
- Device / SMB Session Brute Force (Admin)
- Compliance / External Windows Communications
- Anomalous Connection / New or Uncommon Service Control
- Compromise / Unusual SVCCTL Activity
- Compromise / Rare Domain Pointing to Internal IP
- Anomalous File / Masqueraded File Transfer
RESPOND Models
- Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
- Antigena / Network / External Threat / Antigena Suspicious Activity Block
- Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
- Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
- Antigena / Network / External Threat / Antigena Suspicious File Block
- Antigena / Network / External Threat / Antigena File then New Outbound Block
IoC一覧
IoC - Type - Description
/C558B828.Png - URI - URI for Purple Fox Rootkit [4]
5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)
190.4.210[.]242 - IP - Purple Fox C2 Servers
218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)
180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)
103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)
MITRE ATT&CK マッピング
Tactic - Technique
Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002
Resource Development - Obtain Capabilities: Malware T1588.001
Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001
Initial Access - Drive-by Compromise T1189
Defense Evasion - Masquerading T1036
Credential Access - Brute Force T1110
Discovery - Network Service Discovery T1046
Command and Control - Proxy: External Proxy T1090.002
参考文献
- https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
- https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
- https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
- https://www.foregenix.com/blog/an-overview-on-purple-fox
- https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
Blog
OT
$70 Million in Cyber Security Funding for Electric Cooperatives & Utilities



What is the Bipartisan Infrastructure Deal?
The Bipartisan Infrastructure Law passed by congress in 2021 aimed to upgrade power and infrastructure to deliver clean, reliable energy across the US to achieve zero-emissions. To date, the largest investment in clean energy, the deal will fund new programs to support the development and deployment of clean energy technology.
Why is it relevant to electric municipalities?
Section 40124 of the Bipartisan Infrastructure Law allocates $250 million over a 5-year period to create the Rural and Municipal Utility Cybersecurity (RMUC) Program to help electric cooperative, municipal, and small investor-owned utilities protect against, detect, respond to, and recover from cybersecurity threats.1 This act illuminates the value behind a full life-cycle approach to cyber security. Thus, finding a cyber security solution that can provide all aspects of security in one integrated platform would enhance the overall security posture and ease many of the challenges that arise with adopting multiple point solutions.
On November 16, 2023 the Office of Cybersecurity, Energy Security, and Emergency Response (CESER) released the Advanced Cybersecurity Technology (ACT) for electric utilities offering a $70 million funding opportunity that aims to enhance the cybersecurity posture of electric cooperative, municipal, and small investor-owned utilities.
Funding Details
10 projects will be funded with application submissions due November 29, 2023, 5:00 pm ET with $200,000 each in cash prizes in the following areas:
- Direct support for eligible utilities to make investments in cybersecurity technologies, tools, training, and improvements in utility processes and procedures;
- Funding to strengthen the peer-to-peer and not-for-profit cybersecurity technical assistance ecosystem currently serving eligible electric utilities; and
- Increasing access to cybersecurity technical assistance and training for eligible utilities with limited cybersecurity resources. 2
To submit for this award visit: https://www.herox.com/ACT1Prize
How can electric municipalities utilize the funding?
While the adoption of hybrid working patterns increase cloud and SaaS usage, the number of industrial IoT devices also continues to rise. The result is decrease in visibility for security teams and new entry points for attackers. Particularly for energy and utility organizations.
Electric cooperatives seeking to enhance their cyber security posture can aim to invest in cyber security tools that provide the following:
Compliance support: Consider finding an OT security solution that maps out how its solutions and features help your organization comply with relevant compliance mandates such as NIST, ISA, FERC, TSA, HIPAA, CIS Controls, and more.
Anomaly based detection: Siloed security solutions also fail to detect attacks that span
the entire organization. Anomaly-based detection enhances an organization’s cyber security posture by proactively defending against potential attacks and maintaining a comprehensive view of their attack surface.
Integration capabilities: Implementation of several point solutions that complete individual tasks runs the risk of increasing workloads for operators and creates additional challenges with compliance, budgeting, and technical support. Look for cyber security tools that integrate with your existing technologies.
Passive and active asset tracking: Active Identification offers accurate enumeration, real time updates, vulnerability assessment, asset validation while Passive Identification eliminates the risk of operational disruption, minimizes risk, does not generate additional network traffic. It would be ideal to find a security solution that can do both.
Can secure both IT and OT in unison: Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, a mature security posture for critical infrastructure would include a single solution for both IT and OT. Separate solutions for IT and OT present challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. These independent solutions also significantly increase operator workload and materially diminish risk mitigation efforts.
Darktrace/OT for Electric Cooperatives and Utilities
For smaller teams with just one or two dedicated employees, Darktrace’s Cyber AI Analyst and Investigation features allow end users to spend less time in the platform as it compiles critical incidents into comprehensive actionable event reports. AI Analyst brings all the information into a centralized view with incident reporting in natural language summaries and can be generated for compliance reports specific to regulatory requirements.
For larger teams, Darktrace alerts can be forwarded to 3rd party platforms such as a SIEM, where security team decision making is augmented. Additionally, executive reports and autonomous response reduce the alert fatigue generally associated with legacy tools. Most importantly, Darktrace’s unique understanding of normal allows security teams to detect zero-days and signatureless attacks regardless of the size of the organization and how alerts are consumed.
Key Benefits of Darktrace/OT
- Anomaly-based detection and real-time response
- Secures IT, OT, and IoT in unison
- Active and Passive Asset Identification
- Automated security reporting
- Attack surface management and vulnerability assessment
- Covers all levels of the Purdue Model
.png)
参考文献
